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Abstract

Artificial devices that are active and participate in the real world are dependent

on their sensor systems to provide a snapshot of the environment around them.

This vital connection between external reality and internal representation can de-

termine the entire character of how a machine interacts with its surroundings. For

systems whose only purpose is sensing, this is the beginning and end of their abil-

ities. Even for many varieties of robotic applications, it can be the limiting factor

on performance. Visualizing the environment in the three spatial dimensions is

commonly the most desired capability.

In all but the most specialized applications, often sensor processing methods

attempt to convert specific sensor signals into the most generic digital representa-

tion possible, followed by digital processing at some location likely distant from

the sensor itself. Digital processing allows some flexibility in processing specifica-

tions, but comes with a price. System resources can be wasted by trying to most

details of the raw data in digital form for long-distance communication. The entire

process involved for “packaging” sensor data for digital computation risks losing
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essential qualities available at the sensor. It also incurs penalties in performance

and power efficiency.

I demonstrate in this thesis two sensor processing systems following a contrast-

ing philosophy from such traditional methods. Sensor processing is carried out as

near to the physical sensors as possible, capturing essential features immediately.

By also concentrating on specific representations of data designed to be most use-

ful, efficiency is the result. A visual imager and sonar array system are shown to

and yet use little power. They carry out their functions more in a superior way

for certain applications than presently existing alternatives. In some cases, they

enable new applications not previously possible because of extremely optimized

performance.

Advisor: Prof. Ralph Etienne-Cummings

Readers: Prof. Andreas G. Andreou and Prof. Virantha N. Ekanayake
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Chapter 1

Introduction

1.1 Background

One of the defining aspects of human history has been the desire and skill for

creating better and better tools. The first tools facilitated manual labor, increas-

ing mechanical advantage and multiplying the effectiveness of physical work. As

basic needs were met, people had both the time and the need to create more so-

phisticated tools. A cycle developed in which new technology both enabled and

created a desire for even better tools and technology. Today, the relatively ad-

vanced technology we use in our daily lives is the result of this long lineage of

innovation based on human inventiveness.

As technology matured along with society and culture, our demands evolved

from purely mechanical to computational. Analogous to their mechanical coun-
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terparts, the first computing machines multiplied mental labor by helping peo-

ple calculate mathematical problems many times faster than an unassisted person

could. Their speed and capabilities increased at an amazing rate. Computers have

now improved to the point where they can facilitate many different kinds of non-

physical tasks such as writing, drawing, and communication, where their mathe-

matical underpinnings are not obvious or unseen altogether. They are increasingly

seen as something more than mathematical engines.

As our perceptions of computers become more and more general, it is tempting

to imagine that the next logical evolution of these machines is to “think” for them-

selves. Currently computers behave much as any other tool–they may multiply

our effort, but only in the sense that they follow our strict commands and specific

instructions for their behavior. Inducing a machine to behave more autonomously

as an assistant and less as a tool would allow more work to be accomplished with

less oversight from people.

If intelligent devices are going to become more active, increasing their ability to

assist humans, they need a proper awareness of the world they are going to operate

in. This awareness cannot simply be recording video or audio, or any other type

of raw data. It must include capturing features of the world in a more meaningful

way. Data must not merely be gathered, but it must be understood. Understanding

the world begins with a machine’s interface to the world, its sensors. Its sensors

must supply clues to help it navigate and be effective in its environment, not just

2



record it.

A machine able to interact with the world in real-time needs to be able to re-

ceive useful features from its sensors in real-time. Here, both the rate of processing

and the delay, or latency, from stimulus to response is important. A mobile ma-

chine possessing untethered freedom to interact with its environment must also

accomplish such tasks in an energy-efficient way. A strategy addressing all of these

concerns, enabling high-throughput, low latency, and low-power consumption, is

to embed some low-level pre-processing at the sensor level itself. Unintelligent

sensors which merely forward raw data to a distant processor necessarily make

a trade-off between the detail of the data sent and the power and complexity in-

volved with communication of the data. Processing carried out close to the sen-

sor can take advantage of immediate, low-level access to more of the sensor data

without much of the costs of long-distance transport of that data. Such “smart”

sensors extract useful features from raw sensory data before passing the result to

higher-level processing. The quickness with which they are able to translate reality

to actionable data can even enable any number of applications which were previ-

ously not possible, especially those involving feedback loops requiring no latency

and high update rates. For these applications, energy efficiency is an additional

bonus.

Applications for sensors in isolated environments are inherently resource-limited.

For a battery-operated wireless sensor, both low-power operation and efficient
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coding of information to be transmitted are vitally important. Because wireless

data transmission is often a significant use of power, smaller bandwidth is often

synonymous with significantly lower system power consumption. Ideally, isolated

sensors could be placed over a wide area without fixed (wired) infrastructure for

power or data transmission. For the dream of distributed sensing to become a real-

ity, engineers will have to break their dependence on standard method of digitizing

analog data as close to the source as possible, at higher and higher bandwidths to

capture more nuances of the signal. The power needed to run a fast ADC and the

huge amount of data it produces may be too costly, especially if much of that data

is redundant or useless. For tiny data collectors, with miniaturized power supplies

and miniaturized transmitting antennas, efficiency is everything.

An autonomous device equipped with only one type of sensor may be able

to operate in a limited or well-controlled environment, but its versatility will be

limited. There are numerous situations in which multiple methods of sensing the

environment are vital to its effectiveness or even survival. A person can avoid a

hot stove because they can feel the heat from it, even though it may not be visibly

red-hot. An assembly-line worker can feel that a part is not smooth even if by sight

it is not visibly rough. A car in need of repair may make a distinctive sound despite

the fact that all gauges indicate normal operation. Most animals possess multiple

senses merely to survive in their environment. Evolution thus argues strongly that

complementary ways of sensing one’s environment are very useful even for very
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simple animals.

1.2 Principle Objectives

The sensory systems I describe in this work are designed to provide functional

information about the environment to either a mobile robot, a distributed sensor

system, or a feedback-based system fast information about the world. Beyond

merely sensing, these systems provide a first layer of processing from sensory in-

put information. They extract and output useful features about the world, which

may be used directly by a central processing unit. These features include locations

of fixed or moving objects in three spatial dimensions. To facilitate more general

imaging of the environment, features may also describe useful parts of fixtures

such as walls or terrain to facilitate navigation.

Target applications include resource-limited situations such as guidance for a

small mobile robot, an isolated sensor in a distributed sensing system, or various

biomedical applications. A number of design goals can be derived from these sit-

uations. A fundamental goal is to keep the sensor and processing system as phys-

ically small as possible. Specifically, sensor and sensor processing should be kept

close to the level of a single-chip solution. The physical sensor may necessarily be

off-chip, and minimal supporting circuitry may also be necessary. But my aim is

to provide a compact package capable of extracting features from raw sensor data
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locally. I avoid a situation where raw sensor data must be prepared for long-term

communication before it can be processed.

Secondly, power efficiency is essential for miniature remote or highly mobile

applications. Most current methods for storing energy are limited by small power-

to-mass ratios. Roaming robots or isolated sensors with sizes measured in the tens

of centimeters or less must be frugal with power usage in order to last long enough

to be effective without continually recharging.

The speed of sensing, beyond mere throughput, is also vital. The target applica-

tions benefit greatly from instantaneous computation that is not forced to make its

way through a long computational pipeline. Thus, design solutions will minimize

latency as well as increase throughput.

Every sensor technology is more useful in certain settings than in others. In

order to enable my devices to be generally effective in the widest possible cir-

cumstances, I will create multiple sensor types which can be used together. This

prevents the “blind spots” of any one sensor technology from causing a mobile

or isolated device to be without any information about its environment. In ad-

dition, information from multiple sensor types can provide a richer, more multi-

dimensional picture of the world. In this work I describe an optical imager and

a sonar array designed to be used in conjunction with one another. The multi-

dimensional combined view yields the three spatial dimensions and time.

Purely optical or purely sonar systems have been used in the past for sensing
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in 3-D. A sonar system is an active system, sending out the sound energy that

it eventually receives reflected off of distant objects. Because it provides its own

“illumination”, it has the advantage of not depending on ambient conditions for

sensing. It is also excellent for detecting the range of objects, because the range of

an object from the sensor can be directly calculated by how long the reflection takes

to return from the object. This contrasts with optical methods for depth determina-

tion, which may require more than one camera and intensive processing. By using

multiple microphones in a centimeter-scale small array of sonar receivers, the an-

gle from which an ultrasonic ping is returning to the array can also be detected,

allowing for a full 3-D polar representation if two arrays are used.

However, an active sensing system is able to be detected because of its emis-

sions. In instances where stealth is important, this is a major disadvantage. A

passive system such as an imager receives ambient light already present in the

scene. Thus it can be used in situations such as surveillance where secrecy is im-

portant. Passive systems may save energy over active systems because they are

not responsible for sending out the energy they receive. Finally, an optical imager

in a camera can also provide improved spatial resolution for the 2-D projection of

a scene without depth.

It can be seen that a sonar array and optical imager have different and com-

plementary strengths and weaknesses. I will show that by using my particular

processing implementations, and by allowing for the combination of the two, it is
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possible to extract a more energy-efficient and more accurate representation of the

world.

1.3 Past Approaches to 3-D Sensing

1.3.1 Optical only

Traditional optical methods for sensing 3-D have included using two cameras

with stereo processing, and optical flow methods.

Probably the most popular method in the mobile robotics community has been

the use of stereo cameras with massive processing on general-purpose computers.

In fact, the high level of interest of the robotics community in stereo vision under-

scores the importance placed on detecting the world in 3-D, and the need to detect

objects and features of the world, not just images. The typical implementation in-

volved two regular CCD video cameras, communicating full frames to a Personal

Computer (PC) which would perform fairly compute-intensive stereo processing.

Because of the physical size of the processing implementations, the size of the mo-

bile robots involved are on the order of meters, larger than the target applications

of this thesis.

The basic idea of extracting depth from stereo cameras depends on the concept

of parallax. If the same scene viewed from two separate side-by-side positions,

objects nearer to the cameras will show more apparent side-to-side displacement
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between the two views than more distant objects will. By computing the relative

displacement of the same object or point as it appears from two different view-

points, the depth of that object or point can be calculated. The geometry of this

problem is fairly straightforward, as is the math required to deduce depth from

displacement.

The most difficult and processing-intensive part of the operation usually is the

need to determine which two points in the two images correspond. Typically, a

candidate patch of one image is compared with a search neighborhood in the other

image, and the closest match is attempted to be found. This search involves many

iterations, comparing each patch of one image to multiple patches on another im-

age. Classical matching techniques require additions, multiplications, and possi-

bly even square root functions to be applied to data on each iteration.

Various non-idealities of the images may frustrate this process. First of all, ex-

posure errors, including and gain and offset of exposure may exist between the

two images. These are collectively termed radiometric errors, and can cause cer-

tain matching algorithms (such as Sum of Absolute Differences [SAD], or Sum of

Squared Differences [SSD]) to give erroneous results. In addition, spherical distor-

tion from optics and imperfect alignment of the direction of the cameras can make

the geometrical calculations much more complicated than the ideal. One solution

is to carefully mechanically align both cameras. Practically, it is usually neces-

sary to use image processing to warp every raw camera image to a non-distorted
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version before depth processing. These images are termed rectified images. Use

of rectified images greatly simplifies the depth processing, but rectification itself

represents non-negligible computational effort.

Other methods for block matching exist that require less arithmetic computa-

tion yet still allow for good matching performance. These “non-parametric” meth-

ods such as rank and census matching require only comparisons within each patch

to determine which pixels are lighter or darker, and storage of the resulting com-

parisons. Only the ordering of brightnesses matters, which also tends to prevent

radiometric errors from affecting the matching algorithms. At the same time, these

particular matching algorithms allow the matching process to be carried out by

comparing at most 1 bit per pixel in each patch. The data involved is thus far less

than the full brightness values required by more classical methods. Because of the

reduced computation, matching for stereopsis has been implemented in systems

composed of FPGAs only [2, 3]. This is a marked reduction in hardware sophistica-

tion for this task compared with the advanced processors mentioned earlier. How-

ever, it is important to note that in the above references, the boards were still fairly

complex, containing approximately 68,000 equivalent gates and large amounts of

fast cache memory, dedicated only to stereo processing. In addition, the actual

tests of their computation used rectified images because the hardware involved

does not carry out the image warping on each image necessary to prepare them

for matching. This can still be a formidable use of processor resources if full video
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rate (30fps) 3-D vision is desired.

Nowadays, as standard microprocessors used in PCs become more advanced,

most implementations of stereo processing use these general-purpose chips in-

stead of dedicated programmable hardware. Modern PC microprocessors include

units using Single Instruction Multiple Data (SIMD) techniques, often used for the

multimedia extensions. Such processors are optimized for video processing in ad-

dition to their general computational tasks. The advanced processing comes with

a cost, however. Pentium II, III, and IV chips used for this purpose can consume

anywhere from 40W to 100W while carrying out computation.

In summary, there have been many systems that implement 3-D vision from

stereo imagers, with some decent performance. Unfortunately, the computation is

costly, and successful systems involve much hardware, and consume more power

than small applications can afford.

1.3.2 Sonar only (Traditional Sonar and Sonar Arrays)

For a variety of applications, sonar is a popular choice for remote object sensing

and remote imaging. Underwater sensing of ships at sea is possibly the oldest and

most well-known large-scale deployment of sonar [4]. In the past few decades,

sonar technology has increasingly come to be used on smaller scales. Anyone who

has seen a sonogram of a developing fetus is familiar with sonar’s widespread

use in medical imaging [5]. Diagnostic ultrasonic waves are medically benign to
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the patient, involving no radiation exposure as X-rays do. In addition, ultrasonic

imaging is both vastly more portable and lower-cost than other medical imaging

technologies such as Magnetic Resonance Imaging (MRI). Such advantages are

also of prime importance to designers of mobile robots. For these applications,

the low cost and low processing requirements of a sonar ranging system are clear

advantages over other popular methods used to sense the environment. One al-

ternative, laser range-finding, is usually seen as more accurate—but its common

drawbacks include higher cost, higher power consumption, and faster processing

requirements.

A mobile robot built to navigate its environment with sonar sensors is usually

faced with a few well-known challenges. The first is the attenuation of ultrasonic

sound frequencies in air, which is considerably more than the attenuation in wa-

ter. Greater attenuation causes the ultrasonic signal to fall off more quickly, and

reduces the strength of received reflections from distant objects. The second issue

facing designers of ultrasonic systems is the wide angle of sensitivity of most ul-

trasonic microphones. In an ideal sense, it is convenient to think of sound waves

emanating out in a straight line and reflecting back on the same straight line. In

reality, however, most real-world ultrasonic sources have beams which encom-

pass a relatively wide area. Reflections occur from almost every object and reflect

specularly in multiple directions, because all objects appear as smooth surfaces

to long-wavelength (up to 8.5mm in air) near-audible sound waves. Ultrasonic
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microphones receptive over a large angle receive all of these reflections. A naive

processor thinking that a sonar return can only be from an object directly in front of

the sonar sensor will give erroneous, puzzling results in this all-too-common sce-

nario [6]. In the mobile robot community, much effort has been devoted to solving

this problem. More and more complicated systems involving multiple large sonar

transducers, complicated heuristic or statistical processing, and large processing

units have been described in the literature [7, 8, 9, 10]. The trend in these systems

is to increase the amount of information available to the processing units by using

multiple sensors instead of individual ones. The logical conclusion to such work

is array processing, a mature, decades-old field which has already been effectively

used to enhance the reception of both electromagnetic and sound waves [11].

Medical and ship-based sonar systems have been using classical sonar phased

arrays for some time now. Phased array systems use multiple receivers separated

in space to receive a signal from a single source. The angle of the incoming sig-

nal relative to the array determines the phase of the signal at each point in space.

Simple processing can cause the array to be most selective to a particular incoming

signal direction. For instance, summing the response of all sensors in a regularly-

spaced linear array will cause the largest output response when all sensor signals

are in-phase with one another. This will only happen when the signal source is

normal to the line of the array. Variations on this concept include adding partic-

ular phase delays before summation to select a certain angle. More complicated
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digital processing allows for the possibility of selecting multiple angles, and also

of lessening the response to a certain direction to eliminate an interfering signal.

Naturally these techniques can also be extended to a two-dimensional array to

sense input bearing of both altitude and azimuth, which with range yield a full

3-D polar representation.

Most ultrasonic phased arrays are sampled-time systems. For traditional delay-

sum methods, the sampling rate is not based on the frequency of the ultrasonic car-

rier signal, as one might assume. Because relative phase information is the basis

of the whole process, sampling of the signals has to be carried out at a time reso-

lution greater than the smallest inter-sensor signal delay possible—often making

the sampling rate much higher than the Nyquist rate for the carrier signal. In [12],

a delay-sum system using analog sampled-time delays and analog summation is

presented. While potentially compact and low-power, details of the implementa-

tion’s power consumption were not presented. It is sensitive to only one particular

direction at a time, requiring multiple pulses or implementations to scan an angu-

lar space. Also, the minimum time resolution demonstrated in the reference was

1µs. For the microphone array spacing used in this research, time resolution on

the order of 100ns would be necessary to achieve sufficient angular resolution for

its needs. A high sampling rate is even more costly for array processing accom-

plished with Analog-to-Digital Converters (ADCs) and Digital Signal Processors

(DSPs), the form of many modern approaches [11]. Digitization of all members of
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the array can represent a large use of power and a significant flow of data to the

DSP, which for real-time operation must keep up with the incoming flow of data

and carry out array processing. Even for sonar operating at near-audio frequen-

cies, implementing the classical digital phased array approach can thus require

significant processing speeds, power consumption, and cost. And shrinking the

array further would require proportionally higher clock speeds. To achieve a truly

integrated MEMS-type array 5 times smaller than ours would necessitate each sen-

sor’s sampling rate to exceed 50MSamples/s in a clocked digital system, requiring

much more power and complexity for data conversion and processing than is war-

ranted for one sensor array. Quadrature sampling schemes can allow successful

array processing with sensor sampling rates close to the Nyquist frequency of the

carrier [13, 14]. While these methods obtain more relaxed timing requirements,

they require demodulation of the incoming signals, and depend on increased volt-

age precision in the data conversion step. In addition, digital implementation in

the above references utilize fairly fast digital hardware. In these works no power

consumption data is presented, but power usage for the types of FPGAs employed

can easily approach 1W each.

Such design costs may be too high for a number of applications, such as object

detection for mobile robots.
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1.4 My approach (Resource-Limited Processing)

I have described the traditional method of sensor processing as high-speed dig-

itization close to the sensor, with high-speed data transmission followed by high-

speed digital processing. Rejecting this method as too costly in system resources

of bandwidth and power necessitates an alternative approach. The processing sys-

tems of this work all utilize mixed-signal VLSI techniques to accomplish more ef-

ficient processing where standard digital systems are not the most advantageous

use of system resources.

1.4.1 Make Use of Analog Input Data Close to the Source

At the start of the sensor-processing signal chain, sensor data is by definition

analog. Even if ostensibly a sensor provides two-state data, the quantifiable vari-

able of interest is almost always analog. Some examples of analog data from two-

state systems include: the time between states, the number of transitions of states,

or the duty cycle the two states. The sensors of interest in this work are more ob-

viously analog. Both photo-diodes and microphones produce continuous output

currents or voltages proportional to incident light intensity or air pressure, respec-

tively.

Digitization of analog data is a resource-expensive process. Extracting the use-

ful components of the analog data and eliminating useless or redundant data be-
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fore digitization reduces the amount of analog data needed to be digitized. For

applications in which a feasible analog processing solution exists, it makes sense

to remove the digital middleman and make use directly of the analog data from

the sensor. And as I shall argue, sometimes a continuous-time or continuous-value

processing methodology can yield better efficiency for a given application anyway.

Besides processing efficiency, being able to make use of raw signals present at

the sensor eliminates the need to transmit a high-fidelity representation of the raw

data to a remote processing unit. There is often a very clear trade-off between

power used and bandwidth in any communications channel, and this is especially

so for wireless communication. Even driving precision signals off-chip requires

non-negligible power, whether the signals are represented by analog voltages or

currents, or digital lines. The more processing taken care of “in-house” within the

sensor processing chip, the better.

1.4.2 Asynchronous Continuous-Time Circuits

With certain processing schemes described in this thesis, it is possible that dur-

ing most of the time that waveforms are being input, no events relevant to pro-

cessing will be occurring. At the same time, when something does happen, such

important signal changes often need to be processed with great precision. The

sonar processing unit is a good example of such a situation. While pulses can last

as long as 100µs, when pulse edges occur they should be processed them with
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sub-100ns resolution.

Synchronous or time-sampled approaches to data processing sample a digital

or analog signal at regular intervals. The interval must be set small enough to sat-

isfy the worst-case time precision requirements. If the precision requirements are

strict, sampling will occur at a very fast rate. If events of interest are rare, however,

most of the time this sampling will be for no reason at all and simply be a waste

of resources. The biggest waste of resources in this case is usually power: from the

analog buffers copying precise analog sampled signals, or from the switching of

digital circuitry where dynamic power consumption is dominant.

For these applications, a more efficient solution is to use continuous-time cir-

cuits that rely on circuit precision for processing precision, instead of the period of

a sampling clock. This asynchronous approach can require more design ingenuity

to implement successful circuits, but this is an acceptable trade-off for significant

power savings.

1.4.3 Parallelism

The sensor processing that has been implemented also makes use of a collection

of primitive processing units instead of one or two powerful units. By aggregating

many independent units, the errors of each can be averaged, reducing the entire

system error.

For my imager, if a few of the computational pixels give faulty response, it
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will affect the total position result of the moving object only slightly. Because my

sonar processing method uses a nine-element sensor sonar array, errors in preci-

sion between any two sensors are averaged and reduced when all nine sensors

are considered. This is a powerful advantage over simple triangulation using two

sensors.

The parallelism in these sensor systems has been designed as an integral part.

By making this philosophy fundamental to the design and not merely an afterthought,

the effectiveness and speed of the implementation is greatly enhanced.

1.4.4 Application-Specific Processing

Finally, I make use of dedicated processing at the sensor as a final optimization.

Generic sensors with generic processors are obviously the most flexible means to

accomplish computational tasks. However, for many of the envisioned applica-

tions, the cost of power and complexity using totally general-purpose hardware is

too great. As shall be seen, there exist compelling uses for sensor feedback where

the performance of generic solutions is not even adequate. The overhead involved

with digitizing sensor data, and packaging it properly to be compatible with multi-

purpose processors can necessitate significant delays if near-instantaneous reac-

tion to a perceived event is desired.

The loss of flexibility in computation does not mean that the final use of the data

is predetermined, however. The products of of the designed sensor systems aim
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to be useful for many applications, even though computed by dedicated means.

The feature representation endeavors to be basic enough to allow many types of

higher-level uses, but rich enough to allow certain lower-level applications to be

able to efficiently and speedily use information about their environment. This level

of computation is a step up from raw sensor data, and should also aid the combina-

tion of multiple sensors by a processor attempting to coordinate disparate sensors’

views of the world.

1.5 Original Contributions

My computational imager both acts as a general camera to produce a faithful

image of the scene it is viewing, and a computational imager outputting the posi-

tion of a moving object in the scene. It employs a novel system using multiple pixel

types to carry out computation efficiently as well as producing high-quality im-

ages. These two versions of the same scene are automatically registered with each

other, because they are taken from the same focal plane. While many computa-

tional imagers use non-integrating current-mode pixels for computation, this often

results in poor image quality. Likewise, for processing based on integrated pixels

and time-sampled, continuous-time processing is difficult or impossible. By using

two types of pixels, an expedient method is presented to allow for both strate-

gies to be used simultaneously. Much of the processing for the motion-tracking
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functionality is accomplished on the edges of the focal plane, allowing the pixel

implementation to be compact to preserve fill factor. Additionally, computation

of the centroid of the moving object is done in real-time, immediately updating as

pixels in the imager indicate temporal changes. Because position is always being

updated, readout of the position can be read at any time, although waiting for a

longer period of time allows for a greater population of pixels to be averaged in

the centroid position and greater accuracy. This position tracker has been com-

fortably run in a mode where it outputs 180positions/sec., or 6 times the normal

full-motion video rate. The latency involved is also virtually none, at maximum

less than the time between position readings, or 1/180s. Because of the extremely

fast update rate and no latency, it is possible to use this imager output in a feed-

back loop, something possible only at very slow speeds with 30fps conventional

imagers and normal pipelined digitization and computation of image data. All of

this computation and imaging is done on the same chip, using a very small amount

of power to accomplish both, 2.6mW. [15, 16, 17, 18, 19, 20]

The sonar array described takes input from nine microphones and outputs

bearing angle data in addition to the traditional range data usually performed

by sonar systems. The processing involved is a novel use of spatiotemporal fre-

quency filtering, used previously in vision systems but apparently never for pro-

cessing on an ultrasonic array. Conceptually, a wavefront moving across the sonar

array is viewed in this system as a velocity. The spatiotemporal frequency filters
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isolate the energy of this velocity in spatial and temporal frequency space to de-

duce the magnitude. Once the velocity of the wavefront is determined, the trans-

lation to incident angle of the sonar return is straightforward. This method is uses

continuous-time computation, unlike most array processing schemes which use

sampled-time techniques. Because time is not sampled, there is no global clock.

This provides some advantages. In a very small baseline system such as the one I

am pursuing, the clock of sampled-time system would need to be very fast in order

to precisely capture inter-sensor timings to enable bearing detection. A fast clock

necessitates faster analog circuits which use more power, and faster digital circuits

which use more power. The power used in such conventional designs is merely

to accommodate a clock based on the worst-case precision necessary, and repre-

sents a waste of power. In my system, circuit time precision and a novel method of

computation is used instead of a power-wasting global clock. The spatiotemporal

frequency filter also inherently performs an averaging over all nine sensors, reduc-

ing the effect of timing errors from any one sensor. My mixed-signal implemen-

tation of the algorithm is also very efficient, using approximately 1mW of power

to discriminate with 1◦ accuracy over an angular range of approximately 170◦. In

addition, the system allows for a much more plausible migration path to even

smaller sensor arrays, such as could be produced with Micro-Electro-Mechanical

Systems (MEMS), than can be envisioned for sampled-time systems, where scaled

clock frequencies would need to be hundreds of megahertz or even gigahertz. This
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would represent an unacceptable use of computational resources for just one sen-

sor. [21, 22, 23, 24, 25]

The sensor systems also provide processing frameworks that are amenable to

be combined in a future sensor fusion process. The structure of processing in each

is not monolithic, but rather uses discrete levels of processing from raw sensor data

to highest-level output. The internal processing structure is constructed in a way

which could allow an external data fusion processor to be able to access lower-

level but still processed representations of the sensors’ worldview. By making the

architecture of these sensor processors modular in this way, a combination of the

two sensors for a full 3-D measure of the world using two separate modalities

should be much more readily achieved.

1.6 Thesis Overview

We first describe two sensors designed to provide sensory data as well as carry

out selected preprocessing to extract vital features from the data.

The first sensor described is a CMOS imager array. The imager is meant to

be operated behind the lens of a camera as any imager chip for a digital still or

video camera would be. The architecture of the imager is presented, with details

of the computations preformed. The theory of operation is studied, including how

different noise components affect operation. Next, characterizations of various

23



circuits are shown, culminating with the performance of the entire system. Finally,

applications of the imager are described where the advantages of efficient motion

processing are either highly advantageous or necessary.

The next sensor/processing combination described is an ultrasonic microphone

array, and associated array processing electronics. I detail some background of

typical Time-of-Flight sonar for finding range to objects first, including attempts

to make sense of confusing data resulting from range-only data. These ambigu-

ities lead directly to the need for 2-D or 3-D sonar sensing. Next is a review of

spatiotemporal frequency filtering theory, before moving on to its application to a

sonar array. The particular VLSI implementation of spatiotemporal frequency fil-

tering is described, followed by characterizations of all sub-circuits and processing

blocks. Finally, the system as a whole is characterized while listening to an ultra-

sonic beacon and then in a full sonar test involving sound reflected from objects.

Finally, applications to make use of this new advanced sonar system are outlined,

showing the advantages of using this new processing system.

The balance of the thesis provides an overall picture of the advantages, orga-

nized by target application, of these new sensing systems. After showing the ben-

efits of using each system individually, the future work necessary to bring both

sensors together into a hybrid system is sketched. In the course of the description

of the necessary work to fuse the two sensors’ data together, that the processing

structure of each sensor system lends itself well to sensor fusion is also explored.

24



Chapter 2

Imaging and Motion Centroid

Tracking Array: Theory and System

Architecture

2.1 Introduction

Lately, there has been much interest in CMOS imagers as an alternative to CCD

arrays [26]. Specifically, Active Pixel Sensors have been utilized along with Corre-

lated Double Sampling circuits to produce charge-integrating imagers approach-

ing CCD image quality [27]. In addition to image quality, the most important ad-

vantages of using CMOS technology include: lower power-consumption, lower

fabrication costs, and the ability to integrate processing tasks on the same chip as
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the imaging array. The advantages of system integration have been thoroughly

examined, and are the basis of the “System-On-A-Chip” approach [27]. Specifi-

cally, integration enables greater flexibility of processing, simplifies interconnects

between imaging and processing blocks, and further reduces costs by assembling

all functionality onto one die.

Many CMOS imager designs use these advantages simply to make a cheaper,

more efficient substitute for a CCD array and scanning circuitry. The goal of the de-

signed chip described below, however, is to extract information from a scene with

a degree of speed and power efficiency that wouldn’t be practical with physical or

logical separation of the imaging and processing blocks.

The combination of imaging and computation is not a new concept. Numerous

designs for imagers have been created in the past with computation and imaging

combined on the same die [28]. The most notable examples of this design phi-

losophy carry out computation on the focal plane itself. Most of these designs

use current-mode pixels, employing photodiodes or phototransistors to produce

a current which is an instantaneous function of the incident light [29]. The use

of current-mode pixels facilitates continuous-time processing, and enables the use

of space-efficient analog computation circuits. Unfortunately, when image qual-

ity is important, current-mode pixels suffer a worse noise performance than their

charge-integrating cousins [30]. Integration serves to average out such noise fluc-

tuations. Furthermore, capacitors are more easily matched than the transconduc-
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tance or threshold voltages of transistors. The disadvantage of an integration

method is that it produces discrete-time data that is not as compatible with many

space-friendly analog processing circuits.

While this situation seems to create an irreconcilable choice between image

quality and focal-plane computation, there is a conceptually simple way to achieve

both. I have created a chip that uses two distinct types of pixels in the same array in

order to reap the unique benefits of each. One pixel-type is a standard Active Pixel

Sensor for lower-noise imaging, and the other is custom-designed to help compute

the centroid position of a moving object. The two pixel types are interleaved in the

array to ensure automatic registration of imaging tasks. The imager is called the

Dual Pixel Centroid Tracker imager or DPCT imager.

The tracking of object position has traditionally been important for military

applications, and much of the related literature of the past couple of decades is

devoted to this area [31]. As imagers and processors have become cheaper, how-

ever, their potential uses have also broadened [32, 33]. Machine vision for mobile

robots, automation of security camera tasks, image stabilization for medical ap-

plications, and other motor control applications have now become practical. For

mobile platforms such as robots, low power is very important. Devoting process-

ing to objects in its environment that are moving is a logical choice for a robot

seeking to apply “attention” where it is most useful. Likewise, running images of

a static scene through power-hungry processing is a waste of resources. Letting a
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low-level sensor alert the robot to image areas that require further processing is an

efficient solution to these issues. For systems that include the centroid calculation

in a feedback loop, high speed and low latency are vital. Latency is an especially

important issue for image stabilization and mechanical feedback systems. They

demand quick response or risk becoming oscillatory or simply ineffective. In reti-

nal microsurgery, the tremor of a surgeon’s hand is a hazard because precision

on the order of microns is required. Likewise, tremors of the subject’s eye can

cause a blood vessel being operated on to exhibit movement. Optical tracking of

both the surgeon’s instrument and objects in the operating field coupled with me-

chanical compensation of surgical instruments could make the resulting operation

jitter-free. Finally, offloading the task of computing a centroid frees memory and

processing time, which can be used for higher-level tasks such as image segmen-

tation or for other jobs not related to image processing. In a mass-produced item

such as a security camera, centroid-tracking capability built into the sensor could

enable a useful but menial task (detecting intruders) to be automated with little

extra cost. With direct access to the image plane, my centroid-tracking chip de-

scribed below can carry out the same tasks with much less energy and space than

a separate processor could.

There have been other approaches to centroid location and tracking in the past.

The most common approach, mentioned previously, involves communicating all

pixels from the imager block to a processing block, usually a digital processor, be-
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fore computing the centroid [34]. This approach not only involves the computation

time of the processing block, but also the time it takes to read every pixel out of

the array itself into memory. For a system with a digital processor, part of the com-

munication process is analog-to-digital conversion–costly in terms of time, chip

area, and power. If pixels are communicated out of the array one at a time as is

customary for most imagers, the time involved scales as O(n2) with the length of a

side of the array. As resolution increases, this additional time involved in moving

pixel information can become considerable. A 2Mpixel sensor with a 10MHz pixel

clock takes 200ms to output every pixel—costly in terms of latency. The pixel clock

speed can be increased, but this again costs more chip area and/or power.

In contrast, the DPCT imager described in this thesis finds the centroid of mov-

ing objects within the scene using focal-plane computation. The centroid-tracking

pixels in the array include circuitry for both photoreception and preliminary pro-

cessing. Basic processing at the pixel level allows the elimination of more complex

processing later. Edge circuitry receives simple binary data from these pixels in

parallel along shared row and column lines. With one edge circuit cell per row

or column, the size of the edge circuitry scales linearly with the size of the edge

of the array. Digitization of pixel analog values is not necessary. There is also no

need for a separate storage elements, because the centroid is computed instanta-

neously from the pixels themselves. Since the computation is carried out in par-

allel, the speed of centroid circuitry is nearly constant over all imager sizes, de-
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pending mainly on the circuit reset frequency. The most significant scaling effect

is an increase of line capacitance for row and column shared lines proportional to

the square root of the total pixels. This is an issue related primarily to rise and fall

times of these signals, and will not dramatically affect computation speed.

Some prior centroid-tracker designs use the focal-plane for fast, low-power pro-

cessing, but they compute the centroid of the whole scene based on the brightness

of every pixel in the imager [29, 35]. While useful for tracking a bright spot in a

scene, these imagers are unable to discriminate between objects of interest and the

background. The DPCT imager chooses to find moving objects as “interesting,”

and computes the position of these objects independently of the appearance of the

background. This rule is a simple way increase the number of situations that allow

the centroid-tracking system to yield meaningful data.

Of course, in addition to tracking moving objects, one would actually like to be

able to view the objects and the scene itself as a regular image. High fidelity im-

ages are important to applications such as medical imaging, where accurate visual

information is important to human beings who will be viewing them. Good image

quality is also important for computer vision applications that use the centroid-

tracking capability of the chip as a first pre-processing step before more compli-

cated algorithms that need the full image information. For these uses, current-

mode photoreceptors such as those used in the computation pixels would produce

an image that is too noisy. Instead, Active Pixel Sensors are used for imaging. They
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are tiled with the computation pixels so that the centroid position reported has a

very direct and strict mapping to the pixel position in the image. There is no cali-

bration necessary as would be required for an optical setup involving two separate

cameras.

The rest of the chapter will be devoted to analyzing APS and centroid-computation

subsystems to derive expected behavior and performance. The following chapter

examines results from the actual operation of the chip. I will note and explain how

the results are consistent or differ from the characteristics derived in my analysis.

2.2 System Overview

The DPCT imager consists of two subsystems, the APS imager subsystem, and

the centroid-tracking subsystem. The APS array operates as an imager for obtain-

ing real-time images of what the chip sees. The centroid tracker computes the

location of moving targets within the scene. Each can be operated independently

of the other. In this design, no resources are shared between the two except for the

focal plane itself.

Figure 2.1 shows the floor plan of the array and edge circuitry. The pixel for

centroid computation is exactly twice as long on each side as the APS, to facilitate

tiling. Pixels in the same row are of the same type, and the array rows alternate

between centroid-localization pixels and APS. Due to the difference in size of the
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Figure 2.1: System-level view of chip

pixels, APS rows are 120 pixels across while each centroid row contains 60 pixels.

The non-uniform arrangement of pixels was motivated by a desire to increase APS

resolution for better image quality. Unfortunately, this decision was directly re-

sponsible for APS matching and performance problems, which will be discussed

in more detail below. Digital lines are run along rows to keep the digital switching

transients for one style of pixels from coupling to signals in the other. The chip

was fabricated in a standard analog 0.5µm 1P3M CMOS process by Agilent.
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2.2.1 APS Imaging Subsystem

The design of the APS pixel follows the same basic three-transistor/one-photodiode

design pioneered by Fossum et al [26]. See Figure 2.2. Included are a reset tran-

sistor, an output transistor, and a transistor select switch to address the pixel. The

structure is simple, with no provision for electronic shuttering. It is optimized

primarily for density and secondly for fill factor. All transistors in the pixel are

NMOS, to reduce the area of the pixel.

The row circuitry is comprised of two cyclical shift register chains: one for row

reset signals, and the other for row select signals. Each row of pixels receives reset

and row-select signals from one stage of each chain. Clocking these shift registers

advances their bit pattern forward by one row, starting readout of the next row.

The reset shift register can be pre-loaded with blocks of ones and zeros in a flexible

way, allowing integration time for each row to be specified as a modifiable fraction

of the total frame time. This can be viewed as a “rolling shutter.” In addition, there
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is circuitry on the reset lines to facilitate reset timing on a shorter time scale than

one row clock. A separate global signal, “directReset” in Figure 2.3, is AND’ed

with each row’s signal from the shift register. Using this signal, integration can

be stopped and reset initiated in the middle of one row’s output cycle. This is

especially important to facilitate the operation of the Correlated Double Sampling

system, as described below. It also allows for easy prototyping, allowing a simple

method to examine the operation of one row’s pixels without running the entire

array.

Each column of pixels has its own dedicated processing circuitry. The column

circuitry starts with its most important block, the Correlated Double Sampling

(CDS) circuit [36, 37]. The job of the CDS circuit is to subtract the reset voltage from

the signal voltage, ensuring that only the difference between the two is measured

instead of the absolute signal level itself. This drastically reduces offset errors in

readout. It also compensates for noise and different reset voltage levels resulting
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Figure 2.4: CDS, column buffer, and output switching circuit.

from different light intensities during reset. The CDS is implemented as a sim-

ple switched capacitor circuit, producing a single-ended output voltage. A fully

differential circuit would have exhibited more immunity to power supply ripple

and interference from other signals. However, since these reasons weren’t com-

pelling for the application, it was decided to stay with a simpler method in order

to shorten design time and minimize the area of the layout. Making efficient use

of space is especially important for this circuit because it is used in each column.

A simple 7-transistor (diffamp and inverter) opamp with Miller compensation in a

unity-gain configuration follows the CDS circuit for output buffering. Finally, the

end of the column circuit employs yet another shift register chain to sequentially

activate the switches that output one column voltage at a time to the single-pin

output. Figure 2.4 shows a schematic of the CDS circuit.
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2.2.2 Centroid Tracking Subsystem

The basic functionality of this subsystem is the computation of the centroid

of all pixels whose brightness levels vary with time. This approximates finding

the centroid of a moving object. A moving object will at least cause pixels at its

edges to change, (in the case of a solid-colored object, for example,) and at most

many pixels within the object’s image will also change if it contains details or tex-

ture. The centroid of time-varying pixels in both images will be close to the center

of the object. This scheme works most accurately for small objects, simply be-

cause no points on a small object are very far from the centroid. The uncertainty in

pixel activity-detection will thus cause a smaller possible error in centroid position

computation. In the particular design used in the DPCT, implementation details

necessitated that only an increase in brightness is detected; the reasons for this

modification are explained below. With this alteration, moving bright objects on a

dark background should theoretically be tracked by their leading edge, and dark

objects on a bright background by their trailing edge. This may cause more devi-

ation from the true centroid in some situations. However, most real-world objects

do have texture and are not solid-colored. In these situations, many pixels inside

the outline of the object will be activated besides the outline pixels, lessening the

impact of ignoring intensity decreases. The output of this subsystem is a set of two

voltages: one for the x position, and one for the y position.

The method employed to detect pixel brightness changes can be thought of as a
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Figure 2.5: Centroid-tracking pixel schematic.

simplified form of an address event representation imager [38, 39, 40]. That is, the

only output from each pixel is a digital event: the assertion of that pixel’s row and

column. Edge circuitry then processes the activated rows and columns to find the

centroid. Moving the more-complicated processing to the edges of the array keeps

the pixel size smaller and helps to increase fill factor for the motion-sensitive pixels.

2.2.2.1 Centroid Pixel

The pixel itself starts with a photodiode, which is biased by an NMOS transis-

tor with its gate voltage fixed. (See Figure 2.5.) The voltage at the source of this

load NMOSFET will be proportional to either the logarithm or the square root of
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the incident light intensity, depending on whether the photodiode current operates

the NMOS in the sub-threshold or above-threshold region respectively. Since the

goal is to detect a relative change in brightness, the circuit is designed to be sensi-

tive to the same multiplicative change in photocurrent at any absolute brightness

level. Such contrast sensitive photodetectors have also been observed in biolog-

ical visual systems [41]. The logarithmic transfer function of the sub-threshold

transistor translates a multiplicative increase or decrease in photocurrent into an

additive increase or decrease in output voltage, simplifying the task for the next

stage of the pixel. The square root function does not share this property exactly,

but it has a similar curve and approximates a logarithm. Fortunately, for most

light levels the pixels of the DPCT chip operate in the subthreshold region. Light

intensities of over 10mW/cm2 are required to generate over 1nA of photocurrent,

and in practice even extremely bright light conditions do not exceed 1mW/cm2 at

the photosensor. The photosensitive voltage is AC-coupled to the rest of the pixel

through a PMOS capacitor with the well tied to the drain and source. The rest of

the pixel consists of a resettable comparator circuit, implemented using a biased

CMOS inverter, and a feedback switch. The inverter includes a cascode transistor

to enhance gain.

Operation of the pixel starts with reset of the comparator block within the pixel.

The inverter feedback switch is closed, input is made equal to output, and the in-

verter settles at its switching voltage. At this time the voltage difference between
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the photodiode cathode and inverter input voltage is stored across the PMOS ca-

pacitor. The PMOScap is held in inversion, since the inverter reset voltage is signif-

icantly lower than the photodiode voltage. When the switch is opened, the inverter

goes into open-loop operation. As the light level on the photodiode increases, the

voltage on its cathode will decrease. Since the input to the inverter circuit is float-

ing, (high impedance,) its voltage will now track the voltage on the photodiode,

offset by the voltage across the capacitor itself. When the voltage decreases by a

given amount ∆V corresponding to a given factor increase in photocurrent, the in-

verter will trip and its output will go high. If light on the pixel decreases, however,

no event will be signaled because the inverter will move even farther away from

its switching threshold.

The amount of change in incident light necessary to trigger the pixel after reset

is released depends on the setting of Vpbias, and the amount of light incident during

reset. The setting of Vpbias will set the reset voltage of the inverter. To maximize the

gain of the inverter and to save power, subthreshold-level currents are used in the

inverter. By equating the drain currents of the PMOS and NMOS transistors we

can write

I0Ne
Voutκn

Ut = IDN = IDP = I0P e
(Vdd−Vpbias)κP

Ut (2.1)

where Ut is the thermal voltage, κN and κP are subthreshold slope factors,

and I0N and I0P are process-dependent and gate geometry-dependent factors re-
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lating9+6 fundamental currents of the subthreshold transistors. The equation for

output reset voltage is thus:

Vinvreset =
Ut

κN

ln
(

I0P

I0N

)
+

κP

κN

(Vdd − Vpbias) (2.2)

From this equation and the fact that I0P is significantly less than I0N , we can see

that Vinvreset < Vdd−Vpbias. The difference between Vinvreset and VT of the NMOS row

and column pull-down transistors determines the initial output ∆V necessary to

cause the NMOS pull-down transistors to conduct and signal a change.

∆Vout = VTN − Vinvreset (2.3)

Dividing this ∆Vout by the gain of the inverter yields the ∆Vin necessary to suffi-

ciently move the output.

∆Vin =
∆Vout

Ainv

(2.4)

where the gain of the inverter with subthreshold drain current is:

Ainv =
−gm5(

gds4

gm4

)
gds5 + gds3

(2.5)

Ainv =
(−κN

Ut

) 
 1

Ut

V0N4κN

1
V0N5

+ 1
V0P3


 ≈ −κNV0P3

Ut

(2.6)

yielding

∆Vin = −∆VoutUt

κV0P

(2.7)

or

∆Vin = −(VTN − Vinvreset) Ut

κV0P

(2.8)
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V0N and V0P are the early voltages of the NMOS and PMOS transistors in sub-

threshold. Because of the cascode transistor, the gds of transistor M5 no longer

makes a significant contribution to the gain, and can be neglected in the final ex-

pression. Note that ∆Vin is negative, due to the negative gain of the inverter. This

equation describes the basic operation of the pixel. More details, including the

effect of the coupling of the switching voltages, will follow later in the Analysis

section.

The inverter drives two NMOS pull-down transistors, attached to the particular

row and column lines associated with the pixel. These lines are set up in a wired-

OR configuration, with weak PMOS pull-up transistors on the edges of the array.

Switches can disconnect the array from the edge circuitry to avoid current draw

during reset.

2.2.2.2 Centroid Edge Circuitry

To compute the 2-D centroid, the centroid of the activated rows and activated

columns are separately computed in order to arrive at a final (x, y) coordinate. A

center-of-mass algorithm is employed, resulting in sub-pixel precision.

The following is a description of the edge circuitry operation for the column

edge specifically, keeping in mind that row edge operation works identically. Refer

to Figure 2.6 for the schematic of this module. The edge of the centroid subsys-

tem receives a series of column outputs corresponding to each column of the cen-
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troid pixel array. Columns containing pixels that have experienced an increase in

their brightness will show up as logic low. The center-of-mass calculation com-

putes a weighted average of every activated column using the column position as

weight. For example, if only columns 20 and 21 have been activated, the result of

the center-of-mass calculation would be 20.5. This example illustrates sub-column

position precision. The position weights are represented as a set of voltages from

a resistive ladder voltage divider with as many taps as there are columns. These

voltages are buffered using simple 5-transistor differential amplifiers. A column

with a low (activated) output will first set an SR flip-flop, locking it high until the

flip-flop is reset with an externally provided reset signal. The outputs of the SR
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flip-flops turn on weak PMOS transistors operating in the ohmic region, which

connect the column weight voltages to the centroid output node. The PMOS tran-

sistors have a width/length ratio of 4/22, and are turned on by lowering their gate

fully to ground. All active columns will have their weight voltages connected to

this common node through the PMOS pseudo-resistors, and this network of volt-

ages interconnected through identical pseudo-resistors computes the average of

all voltages connected. The output voltage is thus the center of mass value of all

active columns.

In the ideal case, all activated PMOS resistors would be in the linear region,

so that Vds has a linear relation to the current flowing, approximating a true resis-

tor. For a PMOS to be in the linear region, the condition –Vds < −Vgs + VT must

hold. Equivalently, Vds > Vgs − VT . It must be true that Vgs < 0–Vladdermin, where

Vladdermin is the low voltage of the resistive ladder. Therefore, the sufficient condi-

tion for linear operation can be expressed as:

Vds > −Vladdermin − VT (Vs) (2.9)

This equation also indicates the dependence of the threshold voltage on the

source voltage, because of the bulk effect. In addition to this, it can be seen that

Vds > Vladdermin−Vladdermax must always be true, because the minimum drain voltage

possible is the low voltage of the resistive ladder, and the maximum is Vladdermax,
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the maximum value of the voltage ladder. The value of Vladdermin that satisfies

Vladdermin − Vladdermax > −Vladdermin − VT (2.10)

or

Vladdermin >
Vladdermax − VT

2
(2.11)

will cause Vds to absolutely satisfy the condition for operating in the linear region.

For a typical VTP of -1V and Vladdermax of 2.8V, this gives the low voltage of the

resistive ladder as 1.95V to guarantee all PMOS transistors operate in the linear

region.

In the normal mode of operation, the low voltage of the resistive ladder used

is 1.8V, and the high ladder voltage is 2.8V. In the worst case it is possible that

sometimes a PMOS transistor will not be operating in the linear region, and hence

dominate the averaging operation by its higher conductance. In practice, however,

moving objects are localized. As long as there is only a single moving object in the

scene, the activated rows and columns will be in close proximity to one another.

Hence, the Vds voltages between the reference voltages and their average will stay

small enough to keep each PMOS operating in the linear region.

Notice that each pixel position factors into the center of mass calculation with

equal weight. Because the region of interest is defined as everywhere pixel light

intensity has changed, it is necessary to assume that every point has a weight of 0

or 1. It is possible to imagine other functions, such as one that would weight each

pixel by how much its light intensity has changed. However, it is unclear that this
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is even a desirable metric. Therefore, it is assumed that the meaningful algorithm

for the system is a binary condition: change or no change.

Also of note is the fact that this circuit does not consider the number of pix-

els activated in a column or row. It gives every column or row the same weight

independent of the number of activated pixels. Instead of noting the actual cen-

troid of the pixels that are activated, it detects the centroid of a rectangular box

coincident with the edges of the region of activated pixels. This was chiefly an

implementation-related optimization. It is much easier for the edge circuitry to

note activity/non-activity than to include how much activity a certain row or col-

umn contains. For most objects, the centroid of a coincident rectangular box is a

good approximation of their true centroid. The main drawback of this modified

centroid is that single outlying pixels are given as much weight as those which are

clustered together. Thus, false activity registering on one pixel gives that pixel’s

row and column the same weight in centroid calculations as rows and columns

containing many pixels where the real object’s image lies. This is a regrettable

disadvantage, but justified because of the much simplified implementation of the

current scheme.
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2.3 Analysis

2.3.1 APS Analysis

The APS subsystem is composed of two main units: The APS pixel, and the

edge circuitry that both controls the pixels and helps process output analog data.

The APS pixel used here is a well-proven 3T design, (reset, amplifier, and read-

out switch transistors,) which has been well analyzed in other papers [27, 42]. The

main characteristics of the specific implementation of the DPCT imager is summa-

rized below. Figure 2.2 shows a schematic of the APS pixel, and Figure 2.4 shows

the column readout circuit.

2.3.1.1 APS Pixel Linearity, Gain, and Sensitivity

The gain of the pixel, starting from incident light and progressing to an output

voltage, is a function of only a few circuit elements. The first is the integrating

capacitance on the photodiode node, 94.2fF. This sets the conversion gain of the

photodiode at 1.70µV/e−. Following the input capacitance is the gain of the pixel

gate-source amplifier. The output impedance of the column current sources and

gmb set this gain at 0.77. The switched-capacitor of the CDS circuit ideally per-

forms subtraction of voltages with a gain of one. Leakage currents and coupling

in the switches will introduce error, but because this is not a gain error, gain will

be assumed to be one for the purposes of this analysis. Following the switched-

46



capacitor is a two-stage opamp connected in unity-gain configuration. As such, its

actual gain is more like A/1+A, where A is the gain of the opamp. In the DPCT de-

sign, A is around 15,000, which makes the gain of the buffer configuration virtually

unity.

At this point, the total gain of the system is 1.31µV/e−. To translate this to a

useful figure, it is necessary to change the units of e− to (µW/cm2)·s by assuming

a quantum efficiency of 20%, a wavelength of 600nm, and noting that the photo-

diode area is 30.87µm2. The resulting gain equating voltage to light intensity and

integration time is 244µV/((µW/cm2)·ms).

2.3.1.2 APS Noise

The noise of the APS system begins with the photodiode itself: Dark current

shot noise, and photon shot noise give:

〈
v2

photon

〉
=

Iphoto∆treset
C2

pdiode

q (2.12)

〈
v2

dark

〉
=

Idark∆treset
C2

pdiode

q (2.13)

With Iphoto + Idark ≈ 2pA, ∆treset = 926µs, and the 94.2fF capacitance of the

photodiode node, total noise from current through the photodiode comes to about

33.4e-9V2, or 183µVrms.
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Reset noise is calculated to be 210µVrms from the following basic equation:

〈
v2

pixreset

〉
=

kT

Cpdiode

(2.14)

As Tian [43] notes, this noise figure is only appropriate for reset times long enough

for the photodiode to reach a steady state during reset. The usual mode of opera-

tion for the APS array involves a reset as long as a full row readout time (926µs.)

It turns out that this is long enough for the pixel to reach steady-state reset for

moderately high light levels. However, for lower light levels, the non-steady-state

noise energy figure of
〈
v2

pixreset2

〉
≈ kT

2Cpdiode

(2.15)

should hold. This corresponds to a voltage of 148µVrms. This thermal noise gives

the fundamental noise floor of the images, regardless of matching.

Following the reset pixel noise, there exists noise associated with the output

follower pixel amplifier and the input to the CDS circuit. During the clamping of

the CDS capacitor, the noise can be modeled as kT/C noise with the CDS capacitor

of 100fF. This noise amounts to:

〈
v2

cdsclamp

〉
=

kT

CCDS

(2.16)

or 41.43e-9V2.

After the output side of the CDS clamp is unclamped, the total noise power

becomes the sum of the noise contributions from the pixel follower amplifier and

column bias transistor. The two noise sources present are 1/f and transistor shot
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noise. The noise in the currents of these transistors creates a total noise current as

follows:

〈i2th〉is the thermal noise contribution of each transistor:

〈
i2th

〉
=

8kTgm

3
(2.17)

and
〈
i2f

〉
is the contribution of the 1/f noise for each transistor

〈
i2th

〉
=

KF IAF
b

fCoxL2
eff

(2.18)

the total noise current flowing in the column line is:

〈
i2col

〉
=

〈
i2thM1

〉
+

〈
i2thM2

〉
+

〈
i2fM1

〉
+

〈
i2fM2

〉
(2.19)

and the resulting noise voltage-squared energy to the input of the non-clamped

CDS circuit is:
〈
v2

col

〉
=
〈i2col〉
g2

m1

(2.20)

The noise contribution of the follower amplifier is denoted by
〈
v2

amp

〉
. For the APS

buffer amplifiers it is calculated to be 185.54e-9V2, corresponding to 431µVrms[44].

In addition to all of these fundamental noise sources [45], there is also the

unwanted variation in processing of the pixels that is collectively named “fixed

pattern noise”. The dominant phenomenon of fixed pattern noise is the random

variation in the threshold voltage of the reset and pixel amplifier transistors. The

Correlated Double Sampling circuit should eliminate the effects of this variation.
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In addition, CDS should also eliminate the 1/f noise sources in the circuit as well.

Because reset is sampled after the signal, and the two voltages are not part of the

same integration cycle, the kT/C noise from the sampled reset is not correlated to

the noise from the integration cycle. This means it is not eliminated, and so must

still be included in the total noise figure. In fact, it must be counted twice, because

the reset noise powers from the actual integration cycle and the sampled reset will

add to each other. The noise contributions of the column with CDS cleanup of the

1/f noise as will be labeled as follows:

〈
v2

colcds

〉
=

kT

Ccolumn

(2.21)

Since the remaining noise after CDS only contains thermal components, it can be

reduced to a kT/C term. This leads to a final noise expression, after CDS, of:

〈
v2

apstotal

〉
=

〈
v2

photon

〉
+

〈
v2

dark

〉
+2

〈
v2

pixreset2

〉
+

〈
v2

cdsclamp

〉
+

〈
v2

colcds

〉
+

〈
v2

amp

〉
(2.22)

or

〈
v2

apstotal

〉
=

(Iphoto + Idark) ∆treset
C2

pdiode

q +
kT

Cpdiode

+
kT

CCDS

+
kT

Ccolumn

+
〈
v2

amp

〉
(2.23)

Adding all of these noise contributions together gives:

〈
v2

apstotal

〉
= 304.3e− 9V2 (2.24)

for a final noise amplitude of 552µVrms, neglecting 1/f noise.
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2.3.1.3 APS Dynamic Range and SNR

The output voltage range of the APS system is originally limited by the max-

imum reset voltage in the pixel, minus the lowest voltage for reliable photodiode

operation. For this imager, reset is approximately Vdd− VTN , or 3.3V-1.0V=2.3V for

an NMOS transistor including bulk effect. The reset transistor will still be supply-

ing current to the photodiode during the reset cycle. Exactly how much current

the photodiode draws is determined by the light intensity falling on the pixel at

the time of reset, and the final voltage the pixel will reflect this. Since these factors

can and do vary during the operation of the DPCT imager, the real reset voltage

also varies. Part of the function of the Correlated Double Sampling circuit is to

compensate for this normal variance of the reset signal. The follower in the pixel

causes the column voltage to drop by another VTN , which with the bulk effect re-

duces the maximum (reset) voltage on the column to 1.3V.

The minimum voltage of the column is dictated by the column current sources.

They must stay in saturation. For this to be true, the column voltage cannot drop

to less than Vds > Vg − VT , or

Vds ≥
√

ID2

K ′
N

L

W
(2.25)

ID is the saturated bias current for the column. For this chip and a bias of

260nA that is used in the columns, Vds is calculated to be greater 85mV to stay in

saturation. This gives a practical minimum voltage of 100mV. The output range is
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therefore about 1.2V.

With an output range of 1.2V, and a noise level of 455µVrms, the signal to noise

ratio comes to 68dB.

2.3.1.4 APS Speed

The design goal for imaging frame rate was 30fps. The APS subsystem easily

meets this specification for speed. Faster frame rates are possible, but there is a

direct trade-off between exposure time and frame rate, faster rates necessitating

higher light levels. The absolute limit on speed is limited by the column current

sources that bias the source-followers in the pixels for operation. These current

sources are normally biased to around 260nA for low-power operation. This cur-

rent drive, combined with the column line capacitance of 200fF gives a maximum

fall time of 1.3V/µs. This makes the worst case settling time for one column about

925ns with a 1.2V voltage range. The settling time for each CDS amp to be switched

onto the pixel bus is 20ns. Thus, the columns in a row take 925ns to settle, and each

pixel clocked out takes 20ns to settle. In the DPCT imager with 36 rows and 120

columns, the maximum frame rate is estimated to be 8300fps, ignoring the expo-

sure problems associated with short integration time.

The minimum frame rate in practice is set by the desired SNR of the imager and

the light level to be imaged. The maximum integration time per frame is 35/36 of
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the frame duration. This gives the formula for maximum frame rate as:

rframe ≤ (lightlevel) (lighttovoltagegain)

(SNR)(systemnoise)
(2.26)

With values already computed this becomes:

rframe ≤
(lightlevel)

(
244 µV

(µW/cm2)·ms

)

(SNR)(455µV)
(2.27)

2.3.1.5 Correlated Double Sampling Analysis

The CDS circuitry is essentially very simple: a capacitor, a switch, and a buffer

opamp. Leakage of the floating capacitor node is the biggest potential problem to

be faced, and here the severity of leakage on the output signal will be estimated.

From the dark current of the APS pixel, it is estimated that leakage from the

drain diffusion of the clamping switch is 20.25aA. The CDS series capacitor has a

value of 100fF, which leads to a voltage decay rate due to leakage of

∆V

∆t
=

20.25aA

100fF
= 203pV/µs (2.28)

For a 33ms frame, the 925µs row readout time will cause this voltage will decay

by 188nV. This figure is far below the noise level of the APS system and can safely

be ignored. Only a frame rate roughly 200 times slower than this (about 1 frame

every 6.6s) would cause this leakage to be significant compared to the noise of the

system.
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Circuit Current Consumption

Column Biases 31.2 µA

Photocurrent (APS) 8.64µA

Column (CDS) Buffer Amplifiers 417 µA

Digital Row Circuitry 16.4 µA

Digital Column Readout Circuitry 20.0 µA

Table 2.1: Estimated current consumption of APS circuits.

2.3.1.6 APS Power Consumption

Power consumption of the whole subsystem is the sum of digital row circuitry,

pixel reset current, pixel amplifier output current, CDS circuitry, and finally the

digital shift registers for outputting each pixel. Assuming a normal photocurrent

of 2pA/pixel, which is observed under normal indoor lighting conditions, the to-

tal current of the APS subsystem is estimated to be 493µA. From Table 2.1, it is

seen that the dominant current draw is the due to the biases of the CDS buffer

amplifiers.

2.3.2 Centroid-Tracking System Analysis

Again, the subsystem analysis will be divided into two parts: pixel and edge

circuitry. For the centroid-tracking pixel, sensitivity to light change and noise will
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be analyzed. In addition, the linearity of the output circuit computation and gen-

eral system characteristics will be examined.

Figure 2.5 shows a schematic of the centroid-tracking pixel, and Figure 2.6

shows one cell of the edge circuitry.

2.3.2.1 Centroid Pixel Sensitivity

It was described in section 2.2.2 that the equation for input voltage change nec-

essary to trigger the centroid-calculating pixel was

∆Vin = −∆VoutUt

κV0P

(2.29)

or

∆Vin = −(VTN − Vinvreset) Ut

κV0P

(2.30)

In addition to the ∆Vin necessary to raise the output of the inverter from its re-

set state to VTN , there is also the coupling of the reset switch and dummy com-

pensation switch to consider. They will add a ∆Vswitch voltage to the input that

will significantly affect ∆Vin. While the reset switch is being turned off, it still

has some finite resistance. In addition, the output of the inverter remains a low-

impedance restoring voltage, which can sink enough current to offset the charge

from the gate of the switch as it turns off. Therefore, most of the effect of the clock

feed-through will occur as the NMOS switch gate voltage goes below VTN . In this

region of weak inversion, most of the charge has already been depleted from the
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channel. The remaining clock feed-through effect resides in the gate-drain overlap

capacitance. This capacitance for a minimum-size transistor is about 0.5fF. Includ-

ing bulk effects, the gate voltage at which the switch will turn off will be around

1.6V. The charge injected by a voltage swing of 1.6V into 0.5fF is only about 0.8fC.

This amount of charge can be removed by the tiny subthreshold currents running

through the switch before it is completely off. These currents can easily be on the

order of 1nA, even at very low gate voltages. 1nA would remove 0.8fC in 0.8µs.

As long as the fall time of the clock signal is even slightly slow, the effect of clock

feed-through will be reduced by these subthreshold currents. The charge that does

feed through will arrive at the main 150fF capacitor of the pixel. In addition, the

dummy switch transistor operating in full inversion will take in more charge with

its complementary clock than the main switch manages to release. It will couple

into the input node with both drain and source overlap capacitances, and with

the gate-channel capacitance while above-threshold. The combined effect of both

transistors, conservatively assuming the main switch does not conduct very well

while it is in subthreshold, is as follows:

∆Vswitch = −VTN

(
Cgd1

Caccap

)
+

[
Vdd

(
Cgd2 + Cgs2

Caccap

)
+ (Vdd − VTN)

(
Cgc2

Caccap

)]
(2.31)

It should be noted that the “high” gate voltage of the dummy switch need not be

Vdd as it is in this design. By changing the value of the logic high voltage sent to

the gate of the dummy transistor, the expression for ∆Vswitch would be different.

The value of this variable voltage would be substituted wherever Vdd appears in
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the current formula. In this way, one could directly control the value of ∆Vswitch by

this control voltage. This would in turn control the sensitivity of the pixel.

The completed expression for ∆Vswitch allows us to write the full description of

the change in photodiode voltage necessary to trip the inverter.

∆Vpdiode = ∆Vin + ∆Vswitch (2.32)

Normally, biases and voltages are set such that Ainv=-1260 and ∆Vout=250mV. ∆Vin

thus becomes 198µV. ∆Vswitch is computed to be 56.5mV. The voltage for ∆Vpdiode

in this case is dominated by ∆Vswitch.

The photodiode voltage is regulated by Vgs of transistor M1. This Vgs is directly

dependent on the photocurrent of the photodiode. If the light falling on this pixel

induces a subthreshold pixel current, (as it does for almost all lighting conditions,)

then the source voltage of M1 will change as the natural log of current change.

The current will have to increase by a specific multiplicative factor from its value

during inverter reset to change Vgs by a sufficient amount. In order to change the

source voltage by a specific ∆Vpdiode, the current will need to reach Itrip as described

in the following equation:

Itrip = MlightIreset (2.33)

Mlight = exp
(

∆Vpdiode

Ut

)
(2.34)

From the values for ∆Vpdiode given above, Mlight = 9.6.
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2.3.2.2 Centroid Pixel Noise

Since the output of each centroid-tracking pixel is a digital voltage, noise of

the output voltage is not a concern. Noise can degrade the operation of the pixel

by introducing a random voltage component into ∆Vin, and hence in the factor

increase in light level necessary to activate the pixel. In this section this noise-

induced uncertainty will be calculated.

The first noise source arises from the process of resetting the inverter. During

reset, the output node of the inverter will exhibit kT/C noise due to the thermal

noise in the inverter transistors, and the main pixel capacitor. The main pixel ca-

pacitor is 150fF, so this reset noise is: 〈v2
reset〉 = 26.5e− 9V2, for an amplitude of

162µVrms. When reset is released, the input will start with this level of noise.

The photodiode/NMOS bias sub-circuit is easy to analyze for noise, because it

is the same as an APS photodiode in perpetual reset. As such, it also exhibits kT/C

noise. Because during normal (non-reset) operation the main explicit capacitor in

the pixel is floating, it will not contribute to this noise figure. The photodiode

parasitic capacitance on this node totals 82fF. This gives
〈
v2

pdiode

〉
= 50.5e − 9V2

and a noise amplitude of 225µVrms.

These two noise sources together give an noise power to the input of the in-

verter of
〈
v2

reset

〉
+

〈
v2

pdiode

〉
= 77e− 9V2 (2.35)

or an RMS noise voltage of 277.5µV. That much voltage change on the input of
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the inverter corresponds to an extra factor of 1.01 of photocurrent and hence light

intensity. Compared to the threshold for tripping the inverter of Mlight = 9.58, this

is a small amount of noise—clearly not enough to cause accidental activation of

the inverter.

2.3.2.3 Centroid Subsystem speed

The limiting speed of centroid operation is dependent on the reset time and the

propagation delay of the pixel inverter. There is a certain minimum time that the

inverters of the pixels need to be reset to settle to their final trip point.

Each inverter during reset can be modeled as a PMOS current source and a

diode-connected NMOS transistor, along with the main pixel capacitor to AC ground.

The diode-connected NMOS can be approximated as a resistor with value 1/gm5,

with gm5 calculated at the operating point where Vout has reached its final equilib-

rium voltage. This will not be a true representation of the circuit operation. An

accurate analysis requires a large signal model. But the value for 1/gm5 at the

equilibrium point will give a result that is only more conservative than the true

behavior. When Vout starts too high and must fall to reach equilibrium, the actual

gm5 will be more than the equilibrium gm5, and the circuit will reach equilibrium

faster in reality. When Vout starts lower than equilibrium, the actual gm5 will be

lower, and the circuit will again reach equilibrium in reality faster than calculated

in theory.
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Figure 2.7: (a) Centroid pixel inverter in reset. (b) Equivalent small-signal inverter
reset schematic.

Figure 2.7(a) shows the simplified inverter circuit and Figure 2.7(b) its equiva-

lent small-signal circuit. In this simplified model, it becomes a simple RC circuit,

with τ = Caccap/gm5. gm5 = ID(κN/Ut) for this circuit in subthreshold. At equi-

librium, ID=68.82pA, so gm5=2.27e-9mho and R=439.8MΩ. With Caccap=150fF, this

gives a time constant of τ=66.0µs. (2.2)τ , or 145µs, is a more conservative time con-

stant, with the voltage moving 90% of its total swing in that time. The actual reset

time constant will be shorter, but this is a good conservative minimum.

The propagation delay of the inverter is directly dependent on the bias of M3.

The parasitic capacitance on the output of the inverter is roughly 12.3fF. This yields

a propagation delay of

tinverter =
CvTN

Ibias

=
(12.3fF)(0.75V)

Ibias

(2.36)

For 68.82pA, tinverter = 134µs. Summing this with the minimum reset time gives
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a total minimum cycle time of 279µs and a maximum centroid rate of 3580Hz. It

should be noted that increasing the inverter bias current by an order of magnitude

will decrease the inverter propagation time by a factor of 10, and will increase the

centroid system current consumption by only about 1.5%.

The time after reset and before the tripping of the inverter is spent waiting for

the photocurrent to change by a sufficient magnitude. The length of this period of

time, tdetect determines the minimum rate of change of light levels in order to be

detected.

Rchange =
Mlight

tdetect

→ tdetect =
Mlight

Rchange

(2.37)

For a desired maximum Rchange, equation 2.37 computes the minimum tdetect part

of the centroid cycle. The final cycle time takes

tcycle = treset + tdetect + tinverter (2.38)

Conversely, the longest wait without the inverter falsely tripping determines the

maximum period possible with the centroid circuit. Leakage from the switch drain

and source diffusions limits the amount of time the input of the inverter can remain

floating. Taking ∆Vin=198µV from section 2.3.2.1, the leakage current of 60.75aA

from the three drain/source diffusions, and 150fF capacitance of the input to the

inverter, the maximum time before the leakage current alone causes the inverter to

trip can be predicted. In the absence of light, this should happen at ∆tleak=489ms.
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Circuit Current Consumption

Photocurrent (6pA/pixel) 12.96nA

Digital Circuitry (180Hz) 305 pA

Pixel Inverters (68.8pA/pixel) 148.7 nA

Resistive Ladder Diffamps (1.2µA/amp) 115.2 µA

Resistive Ladder 4 µA

Table 2.2: Estimated current consumption of centroid-calculating circuits.

2.3.2.4 Centroid Power Consumption

The power consumption of the centroid-tracking circuitry depends on the pho-

tocurrent drawn by the continuously biased photodiode, the operation of the pixel

inverter, and the digital and analog circuitry on the periphery of the chip.

Photocurrent can easily vary by decades depending on the intensity of the inci-

dent light. We will assume a photocurrent of 6 picoamps, which has actually been

observed in indoor lighting conditions with the DPCT chip. Given this level of in-

cident light, the continuously-biased pixels use about 13nA over the whole array.

The total current of this block has been estimated to be 116µA, of which the largest

component goes to the buffer diffamps on the resistive ladder of the edge circuitry.

Table 2.2 shows the computed current draw of each part of the centroid circuitry.
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Chapter 3

Imaging and Motion Centroid

Tracking Array: Results

3.1 APS Performance

3.1.1 Measured APS Linearity, Gain, Sensitivity

(See Figure 3.1 for example APS images.) A graph of pixel voltage output vs.

light intensity input is shown in Figure 3.2. Voltages corresponding to the input

light range from 11µW/cm2 to 121µW/cm2 were fit to the straight line in the graph.

Within this range, the slope was 8.27mV/(µW/cm2). For the chosen full-rate video

integration time of 33ms, this corresponds to 250µV/((µW/cm2)·ms), only 3.3% off

from my 242µV/((µW/cm2)·ms) estimate in the Analysis section.

The voltage range corresponding to this fit was 2.19V to 3.09V, for a linear range
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Figure 3.1: Example pictures from APS image array.
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Figure 3.2: Output pixel voltage versus input light level, 33 ms integration time.
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Figure 3.3: Temporal noise at output of chip.

of 0.9V. Within this range, the RMS error of the voltage values from the fit line was

2.3mV.

3.1.2 Measured APS Noise

(Figures 3.3, 3.4, and 3.5 show graphs of measured APS noise.) All measured

noise of the APS imager exceeded predictions from the analysis. This is under-

standable, considering that it was necessary to omit 1/f noise from the computed

noise value.

Temporal noise in the APS imager, measured over time at the same pixel lo-

cation, was extremely low compared to other noise sources. All measurements

indicate a temporal noise of less than 1.8mVrms over the linear signal range. See
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Figure 3.4: Pixel-Pixel Fixed Pattern Noise.
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Figure 3.5: Column-Column Fixed Pattern Noise, entire image.
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Figure 3.3. The predicted APS system noise was 552µVrms, which corresponds to

the minimum value of the temporal noise vs. light level graph. The noise of this

measurement was so low, that it is probably approaching the minimum resolvable

levels that the board readout electronics are capable of accurately detecting.

Pixel-to-Pixel fixed pattern noise for the imager was barely detectable at low

light levels, increasing at an almost linear rate as the signal level increased. Look-

ing at the large-signal equation for a gate-source follower with transistor M1 the

follower and M2 the current source,

Vin = Vout+VT0+γ1

√
2 |φF |+ Vout−

√
2 |φF |+

√√√√ Ibias

K ′
N

(
W
L

)
1

√
1 + λ2Vout

1 + λ1 (Vdd − Vout)
(3.1)

we can then derive an expression for the change in output voltage due to a change

in input voltage (as would be computed by the CDS unit)

Vin(reset)− Vin(final) = Vout(reset)− Vout(final)− γ1B −
√

Ibias1

K′
N(W

L )
1

D

B =
√

2 |φF |+ Vout(reset)−
√

2 |φF |+ Vout(final)

D =
√

1+λ2Vout(reset)
1+λ1(Vdd−Vout(reset))

−
√

1+λ2Vout(final)
1+λ1(Vdd−Vout(final))

(3.2)

From equation 3.2, we can see that the deviation from a direct ∆Vin = ∆Vout re-

lationship involves the bulk effect of the pixel amplifier transistor (B) and the

drain conductance of both pixel and column current source transistors (D). It can

be shown that the factor D increases almost linearly with decreasing Vout given

λ1=0.0801, and λ2=0.0626, which is the case for the APS system. As D increases,

it magnifies the contribution of the (W/L)1 factor from the gate-source follower in
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the expression. Thus, any variation in the gate-source follower transistor geometry

in the pixel will have an increasing effect as the signal increases and Vout decreases.

To decrease this effect, we need to reduce λ1 and λ2. Lengthening the column cur-

rent source transistor, and also the pixel transistors if space allows, will accomplish

this.

Column-to-column fixed pattern noise results were relatively constant over the

linear range of the imager. They stayed at or near the worst pixel-to-pixel noise

of about 16mVrms. There are two chief reasons for this undesirable performance.

First of all, because the simple architecture of the DPCT used a CDS circuit on the

end of every column and not globally, there is no way to correct column-to-column

offsets. Use of a global CDS circuit would alleviate much of the column-to-column

FPN.

The second main reason has to do with the layout of the pixel array. Alter-

nating lighter and darker vertical stripes are apparent in images of dimly, evenly

lit scenes. Because two APS pixels are tiled above and below every one centroid-

mapping pixel in the array, the physical and electrical environment of adjacent

APS pixels is not the same. Put more simply, for every two adjacent APS pixels,

one will see the left sides of neighboring centroid-mapping pixels, and the other

will see the right sides of neighboring centroid pixels. Because of the asymmetric

placement of the photodiode area within the centroid pixel, doping profiles for left

and right APS pixels will be slightly different. Also, due to the differing proximity
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Figure 3.6: Voltage/Light transfer plot for odd and even columns.

of the centroid pixel’s photodiode, the amount of photo-generated carriers in the

substrate will be different for left and right APS pixels for the same incident light.

These are unfortunately types of gain errors, and as such is not able to be remedied

by the CDS circuit. This phenomenon is apparent when measurements are taken

separately for odd and even column groups. Figure 3.6 clearly shows a different

light-voltage transfer function for odd columns than for even columns. Looking

at the average pixel value of every column of the array in an evenly-lit scene, it

becomes apparent that the distribution is not normal. In fact, the entire array ex-

periences a bi-nodal distribution, due to the two separate and distinct mean values

observable especially at higher light levels. The column-to-column FPN of all odd

columns and the FPN of all even columns taken separately are each better than the
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Figure 3.7: Column-Column fixed pattern noise for odd and even columns.

combined FPN figure. Figure 3.7 shows even and odd statistics separately.

In future chips, barrier wells could be used to isolate APS pixels from centroid

pixels and improve performance, at the expense of area and fill factor of the ar-

ray. Another solution would be to make the array perfectly regular, with one APS

pixel for every centroid-computing pixel, or to make the centroid-tracking pixels

perfectly symmetric.

3.1.3 Measured APS Dynamic Range and SNR

The total noise of the APS imager as a percentage of signal level for different

light levels can be seen in Figure 3.8. At maximum signal level, the total noise

(standard deviation/mean signal level) of 2.88% corresponds to an SNR of 30.8dB.
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Figure 3.8: Total FPN noise percentage for different light levels. (standard devia-
tion/mean signal level)

3.1.4 Measured APS speed

Imaging at a high enough frame rate to test the limits of the APS is difficult,

due to the high light levels necessary for a useful signal. The readout circuitry

was tested for speed, however. The readout circuits still functioned properly up

to a pixel clock speed of 11MHz, a 91ns period. This was also the limit of the test

circuitry.
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3.2 Centroid Computation Performance

3.2.1 Centroid Frequency Response

From section 2.3.2.3, it was estimated that the fastest rate of blinking for a sta-

tionary blinking light to remain detectable was 3.6kHz. To test this calculation, a

blinking LED was used as a visual target, fed with a square-wave signal of suf-

ficient amplitude and variable frequency. The frequency at which it ceased to be

detectable was around 4.2kHz.

At the end of the same section, the slowest reset possible was calculated to

be 489ms. To confirm this, the array was covered to protect it from light, and

let sit until the pixels tripped through leakage. The actual measured time varied

between 450ms and 490ms in the dark, and took about 200ms in ambient light

with no motion. This strongly suggests that the drain/source diffusions of the

inverter switches are leaking by either receiving indirect light, or are being affected

by minority carriers in the substrate from the nearby photodiode. Such effects

could be reduced by more careful layout of the switch transistors.

3.2.2 Centroid System Performance

The centroid tracking system was tested using an analog oscilloscope screen as

a target. The X/Y mode setting was used, and two function generators set to 10 and

20 Hz supplied the scope channels. In this way, a moving point of light tracing a
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Figure 3.9: Position plot of output centroid data from chip and sum of a reverse-
video series of APS images in background.

stable “figure-8” pattern could be observed on the oscilloscope screen. APS image

data and centroid coordinate data were taken simultaneously. Centroid voltages

were converted to digital data, and sent to a controlling computer. A composite

image of all APS frames was produced by summing all frames and then inverting

the brightness of the image for easier printing. On top of this composite image

is plotted the centroid positions reported by the centroid-tracking subsystem of

the chip. The result is displayed in Figure 3.9. The data is an excellent match

of the target, which was comprised of two sine waves in the x- and y-directions.

There are six centroid coordinates taken for every APS frame taken. One such APS

image and centroid coordinates of the current and previous frame are displayed

in Figure 3.10. It is obvious that while the APS imager sees one smear of the path

of the oscilloscope point, the centroid-tracking circuitry is able to accurately and
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Figure 3.10: Reverse-video of one APS frame image with 6 corresponding centroid
positions, and 6 positions from previous APS frame.

precisely plot specific points along the path in real time.

Figure 3.11 shows another example of the cumulative centroid positions re-

ported for an oscilloscope target. This time, a non-blinking, stationary LED was

placed next to the moving oscilloscope target to show that the stationary LED has

no effect on centroid positions despite the fact that it is much brighter than the

oscilloscope.

With faster moving targets, the speed of the centroid subsystem could be in-

creased even more. Centroid pixels are sensitive to changes in incident light since

their last reset. Therefore, faster changes in light (faster movement) would allow

for shorter reset intervals and higher measurement frequency.

In addition to trials involving a single moving target, experiments using the

chip with multiple targets were performed. In the first, a target consisting of 3
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Figure 3.11: Reverse-video sum of APS images of figure-8 and stationary LED,
with all centroid positions.

LED’s laid out in a triangle formation was imaged. All LED’s were either blinking

or steadily on, and were stationary. Three different tests were performed. The

first test involved all three LED’s blinking at exactly the same time. Figure 3.12(a)

shows a histogram of the centroid positions reported by the chip, with blinking

LED positions marked by circles. From this histogram, we can see that the vast

majority of positions reported are in the center of the 3 LED positions. Notice that

since two LED positions are on nearly the same row, their contributions to the

row position of the centroid are overlapping. Due to the previously mentioned

method for centroid determination which ignores the number of active pixels in a

row, the computed centroid can be seen closer to the far point of the LED triangle

than would be expected from a true centroid. The weight of the far point (row 23)

in the centroid computation will be comparable to both LED’s together on row 10
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(a) (b) (c)

 

Figure 3.12: 2-D Histograms of centroid response with a target of three LED’s.
Circles indicate blinking LED positions, squares indicate steady-on LED positions.
(a) 3 blinking (b) 2 blinking, 1 steady-on (c) 1 blinking, 2 steady-on

of the graph. The second experiment was the same as the first, except that one

LED was made to be continuously on and not blinking. In Figure 3.12(b), the non-

blinking LED location is marked with a square outline instead of a circle outline.

Again, the positions plotted lie in-between the two blinking LED positions, and

are unaffected by the steadily-on LED. Similarly, Figure 3.12(c) shows a test with

one blinking LED position marked with a circular outline, and two non-blinking

steadily-on LED’s marked with square outlines. In this case there is no doubt that

the only positions reported are right on top of the only element of the scene that is

changing in time.

Another experiment with multiple blinking LED’s was performed that involved

uncorrelated blinking. Two LED’s with separate blinking periods and phases, at

different x- and y-positions, were set up in front of the DPCT imager and centroid

positions were recorded. Figure 3.13 shows a histogram of the number of values
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Figure 3.13: 2-D histogram of imager array, showing reported centroid positions
for two uncorrelated blinking LED’s

recorded at a specific region of the array. It can be seen that in addition to the

two positions of the actual LED’s showing a marked response, the linear combina-

tion of their positions also shows a considerable number of recorded coordinates.

If two LED’s are seen to blink in the same period of time tdetect, the centroid of

their positions will be computed and reported. This is the normal operation of

the centroid subsystem. Multiple target tracking is still possible, however, with

the addition of some basic statistical analysis of the positions reported. Through

techniques such as SVD, the linearly-independent positions can be extracted, and

the linear combination of the two positions can be recognized as a false position.

Of course this has more limited applicability. For instance, if true movement of

a third object happened to coincide with the linear combination of the movement

of other two objects, it might be falsely omitted. But for simple observations of a
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few objects, it is possible to extract meaningful position data all objects involved.

A system with broader applicability could be constructed by changing the edge

circuitry of the centroid subsystem, allowing the location of multiple regions of ac-

tivity in the array. This is a hardware change to be pursued in the next-generation

DPCT imager.

3.3 Summary

An imager chip has been built and tested having an array composed of two

types of pixels. One type, an Active Pixel Sensor, is optimized for low-noise imag-

ing, while the other type is a custom designed pixel for computation of the centroid

of moving objects in the image. The APS array contains 36 x 120 pixels, and the

centroid-computing array contains 36 x 60 pixels. Having two types of pixels allow

each to be optimized for its separate task. One consequence of the mixed nature of

the array is that APS image quality has suffered. This is not an intrinsic problem,

and can be solved with modified layout of the pixels. The centroid-tracking sys-

tem performed well, successfully locating the position of a moving target in real

time much faster than the APS imager could merely take images. It is by default a

single-target tracker, though off-chip methods are available to expand its abilities

to track multiple targets.
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Technology 0.7µm 3M1P CMOS

Array Size APS: 120 (H) × 36 (V)

Centroid: 60 (H) × 36 (V)

Total Size: 1.6mm × 1.8mm

Pixel Size APS: 14.7µm× 14.7µm

Centroid: 29.4µm× 29.4µm

Fill Factor APS: 16%

Centroid: 12%

Power Consumption 2.6mW

(3.3V Supply)

FPN (APS) 2.88%

(Std. Dev./Full Scale)

Dark Response (APS output) 6.8mV/s

Conversion Gain (APS) 1.7µV/e−

Output Voltage Range (APS) 0.9V

Table 3.1: Summary of chip properties.
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Chapter 4

Imaging and Motion Centroid

Tracking Array: Applications

4.1 Introduction

With the functionality of the combination DPCT imager established, we now

turn to practical uses of this technology. The essence of the imager is the central

theme of this thesis: local processing at the sensor in order to generate and commu-

nicate only useful or interesting data. “Interesting” in this case is defined as that

part of the scene which is changing. Temporal change of the scene is not the only

possible metric, of course, but it is a useful criterion for many situations, for the

simple reason that dynamic elements represent new information. In the rest of this

chapter, we will explore some example applications where noticing and tracking

80



changes in the scene is useful.

4.2 Mobile Robotics

Most robots used today are not shiny anthropomorphic servants such as C-3P0

from the movie Star Wars. Typically they are factory robots, optimized for a single

type of task in a carefully controlled setting. On an assembly line, a robot which

consists of a single arm or multiple arms can take care of repetitive tasks efficiently.

Of course, the dream of people and roboticists alike is to enable more au-

tonomously operating robots. To be even primitively autonomous, a robot should

be able to be mobile, or roam about. Mobility in itself is not a problem, but navi-

gating indoor or outdoor terrain is much more challenging. Navigation includes

sensing the environment, planning movement, and responding to changes in that

environment. In addition to navigation, to be more than a travelling observer a

robot should be able to carry out useful motor tasks, such as manipulating objects.

It’s not a mental stretch to see that visual information is useful for these tasks,

and indeed many mobile robot designs utilize a camera. Typically they include a

standard CCD-based imager with considerable processing using a PC or similarly-

sized computer to process all of the images streaming from the computer. This

approach works well for people because CCD-based cameras and PCs are ubiqui-

tous, and so is the knowledge to use them. Unfortunately the combination is not
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particularly energy efficient. To scale robots down to centimeter-size instead of

meter-size, their batteries must scale down as well. To enable such smaller, nim-

bler robots with less energy storage, image sensing and processing must become

more energy-efficient [46].

With the DPCT imager, a robot can do a few things important to its functioning.

While its camera is stationary, it can notice and track moving objects around it. Any

idea or map of the robots environment is sufficient as long as the environment is

unchanging. Moving objects are likely to be the most deserving of notice, as they

are the parts of the robots environment that are dynamic. It is essential to notice

and keep track of changes to the environment if the robot is to continue to navigate

it successfully.

Another important task is the manipulation of objects. This type of task is aided

by the DPCT imager. The object-tracking functionality of the imager has a fast

output rate—it can output centroid positions of a moving object easily at 180po-

sitions/s. In addition to having a fast system throughput, it also has extremely

short latency. Since its computation is not pipelined, computation is near instanta-

neous, taking as long as it takes to report one position, or less than 1/180 seconds.

This short latency is a clear advantage in any kind of motor feedback application,

where corrections to robot movement are computed from the visual information

from the camera. Low latency allows for quick movement without instability in

the feedback loop. In a signal chain from a CCD camera, there is Analog-to-Digital
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conversion, data transmission, and finally a separate pipeline for the actual com-

putation. Thus even if position tracking occurs at the standard 30frames/s frame

rate, the actual latency will be longer than 1/30 second for the change to progress

through the whole processing chain.

All of this functionality is achieved with extremely low power consumption.

The 2.6mW consumed by the DPCT imager to produce a low-noise APS image at

30f/s and compute centroids at 180pos./s is many orders of magnitude smaller

than the power consumed by a CCD camera and PC hardware.

4.3 Biomedical Applications

4.3.1 Surgical Training and Evaluation

In micro-surgery, such as surgery on the retina or some vascular surgeries, ac-

tions requiring near-micron-precision are commonplace. While microscopes can

be used to see a greatly magnified view of the operating area, the surgeon’s hand

still controls the operating instruments directly. These procedures thus demand

enormous precision and steadiness. Mastering microsurgery demands both skill

and training in order to minimize hand tremor.

To examine the effects various environmental factors on hand tremor, Tomlin

[47] used the another motion-tracking chip to measure the position and movement

of a tool in the hands of test subjects. The study explored the idea of using biofeed-
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back to help surgeons to reduce their tremor, and examined the effects of exercise

and fatigue on tremor. The data from these experiments yielded useful data that

can be used to help surgeons increase their performance.

The same setup can be used to give direct feedback on tremor for surgeons

in training. This will help beginning surgeons understand their own performance

and how to improve it. In addition, it is a useful way to monitor surgeons and their

performance in the field. Measuring the effects of fatigue on individual surgeons

can give them knowledge of how their own performance is affected by fatigue.

Aggregate data can also help shape policies directing the working hours of micro-

surgeons in order to maintain surgical efficacy and safety.

4.3.2 Computer-Assisted Surgery and Tool Tracking

Another exciting application of optical-tracking technology is to actually help

remove the tremor of the surgeon’s hand. Actuators in the tool, if properly di-

rected, could move the tool opposite to the surgeon’s tremor and cancel out the

unwanted movement.

The steady-hand robot [48] accomplishes this cancellation by sensing tremor

from the force of the human operator’s hand on the surgical tool itself. To work

properly, this method depends on the surgical tool being fixed in space semi-

rigidly, using a control arm mounted on a stationary platform. The large-scale

movement of the tool is thus restricted, in addition to tremor being cancelled.
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While effective, a certain amount of freedom of movement is given up for me-

chanical sensing of the tool to work correctly.

Optical tracking of the tool offers an alternative to mechanical sensing of posi-

tion. For an optical system to be part of a feedback loop, there needs to be much

more demanding requirements on both the update rate of the position sampling

and latency, or delay. Because hand tremor occurs roughly in the range of 4–15Hz,

a feedback loop would need to operate much faster than this to be both effective

and stable. And even with speed, considerable delay between sensing and report-

ing of motion will also cause instability. Both of these requirements cannot be met

with a traditional imager operating at 30fps, and computation system delays of

visual input to position out typically greater than one frame time. However, the

centroid-tracking imager can easily operate at 180positions/s, as described earlier.

With no additional delay from sensing motion to reporting position, latency is al-

ways less than 1/180s. It is believed that this uniquely qualifies the DPCT imager

for this important optical feedback task.

With an optically sensed instrument, there is no longer need for the instrument

to be fixed in space. There is no longer a need for the instrument to oppose motion

merely in order to sense movement. Because force sensing is no longer necessary,

the surgeon can move the instrument more naturally. And micro-actuators on the

tip of the tool should allow for the magnitude of hand tremor to be significantly

reduced.
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4.4 Distributed Sensing Applications

Low-power imaging systems are extremely important for isolated applications

that can supply only limited power, or must rely completely on a finite supply of

stored power. Such situations include duty in hazardous locations, such as nuclear

reactors or military surveillance in enemy territory, and locations unavailable for

maintenance, such as spacecraft. Low-power systems are also called for in any

other location where economy or convenience rule out connection to dedicated

power or constant replacement of batteries.

Constructing a low-power camera is clearly called for in such situations. But

imaging is only part of the power budget for an isolated device. Without wires for

communication, wireless communication is the only option for conveying images

back to a remote operator. This can often be the largest use of power in a remote

system. A survey of consumer wireless cameras reveals that transmission power of

200mW is common for indoor communication. For a remote imager farther away

than a few hundred meters, the transmit power would need to be even greater. To

ensure complete low-power system operation, communication must be kept to an

essential minimum. Compression is one option, but comes with the cost of extra

power used in computing compression algorithms. The simplest way to get sig-

nificant power savings in many surveillance situations is to take advantage of the

fact that often the scene being observed is static. By sending data only when move-

ment in the scene is noted, large time spans can pass without using any transmit
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power at all.

Conventionally, one would execute change detection with a conventional im-

ager, ADC (often part of the imager chip), and microprocessor. All of these com-

ponents would be running continuously, and if change in the scene were noticed,

transmission of video data could be initiated. But even with the best components

available, this strategy would still use far more power than the DPCT imager. To

compare the two, we must compare the power used by the DPCT imager, and the

conventional imaging signal chain as described above. We’ll use 30fps as the rate

at which we look for change, even though the performance of the DPCT imager is

actually much faster.

From a survey of the most power-efficient imagers commercially available,

“low-power” seems to indicate a power usage between 50–80mW [49, 50]. Better

results have been reported in academic papers [51, 52, 53], with Pain [53] reporting

power consumptions between 10–20mW at 30frame/s for a 512x512 pixel imager.

Computationally, change detection can be reduced to a bare minimum of 6 op-

erations/pixel:

1. Fetch 8-bits serially from ADC.

2. Load this value into the accumulator.

3. Get old pixel value for this location from storage memory.

4. Compare the two pixel values.
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5. Store binary result of comparison.

6. Store new pixel value to storage memory.

These 6 operations do not directly translate to processor instructions of course.

Overhead to implement loop structures, longer cycles for processor Jump instruc-

tions, and general housekeeping in the code will cause the number of instruc-

tions/pixel to be significantly higher. 8instr./pixel will be used as a conserva-

tive figure to address the extra instructions necessary for overhead. With this fig-

ure, even if the number of pixels matches DPCT imager’s APS array resolution of

120x36pixels, a total of 34,560instructions/frame would be required just for rudi-

mentary change detection. To operate at 30frame/s, a processor capable of at least

1.036MIPS would be needed.

It is noted that processor efficiencies of 1MIPS/mW and greater have been

achieved by various processor architectures. Such processors are usually designed

for over 1000MIPS operation and over 1W power consumption. However, what is

important for this comparison is not just an efficient processor, but a low-power

processor in absolute terms. 1000MIPS is not required for the change-detection

task, and we cannot permit power usage to even approach 1W. A survey of pro-

cessors available at the time of publication shows that the MSP430 series of mi-

crocontrollers from Texas Instruments currently has the best efficiency while still

allowing operation down to 1MIPS. In fact, the processing efficiency of this proces-

sor family is 550µW/MIPS at all possible operating speeds with a 2.2V supply[54].
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However, these processors have 256 bytes or less of on-chip SRAM, and very few

I/O ports to enable access to off-chip RAM. Even if they could access off-chip

SRAM, operation would be much slower. In addition, power consumption would

markedly increase because of the additional SRAM chip, and the constant charg-

ing/discharging of the I/O pins capacitance during communication with the sep-

arate SRAM. Once off-chip SRAM is necessary, the options become numerous. In

general, at the present time there is unlikely to be a solution which uses less than

0.6mW/MIPS to carry out the processing required and utilize off-chip memory.

Thus, the traditional change detection method is dominated by the imaging

power, using over 10mW for imaging and about 0.55mW for processing. In com-

parison, running both APS and centroid tracker of the DPCT chip consumes 2.6mW

of power. With the centroid tracker alone running, power usage reduces to about

0.6mW of power. Change detection is thus carried out 10 times more power-

efficiently than with the traditional method. In addition, more powerful infor-

mation is available to the consumer of change data—position tracking of moving

objects. This enhanced functionality can be used, for instance, to track a moving

object rather than just notice activity. Comparable functionality from a micropro-

cessor would use many, many more MIPS and increase power demand even more.

Additionally, parallel access to the image plane allows the power consumption of

many circuits in the DPCT chip to scale as the square root of total pixels, while

a microprocessor-based architecture would necessarily scale linearly with pixels.
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For larger imagers the difference in power consumption becomes even more favor-

able to the DPCT.

4.5 Economical 3-D Human Computer Interaction

As the computing power of desktop home computers increases, 3-D applica-

tions have become more numerous. CAD programs, games, data visualization,

and virtual reality all require human interaction with a computer representation

in three dimensions. The main spatial human input device in use today, the 2-

D mouse, is inadequate for such tasks. For closer and more direct interaction of

people with these virtual spaces, methods for tracking position and rotation of

people and the objects they work with are necessary. Additionally, “Augmented

Reality” applications that mix computer-generated images and information with a

real-world task require even more precise registration of objects in the real world

to the virtual.

Numerous methods exist of tracking objects with six degrees-of-freedom (3

translational axes and 3 rotational axes.) As Welch and Foxlin note, there is no one

optimal method for all tasks, but specialized methods that are better suited dif-

ferent specific tasks [55]. A list of the most widely-used technologies for position

tracking includes the use of magnetic fields, inertial methods, direct mechanical

linkages, and optical methods.
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Sensing magnetic fields is one of the most-used methods in the entertainment

industry. Human performers are tracked and computer-generated characters are

directed to mimic their moves. A magnetic field source, using either AC or quasi-

DC fields, generates the field that is either sensed by coils (for AC beacons) or

magnetometers (for DC fields). A strength of this method are that it is relatively

immune from non-conductive occlusions: magnetic fields can pass through a per-

son, for instance. However, AC magnetic fields are affected by the eddy currents

in conductive objects in the sensing area. Also, ferromagnetic objects can affect DC

magnetic field measurement. These interference issues are the reason that mag-

netic position sensing tends to be used in very well-controlled settings, devoid of

any objects other than the performer being tracked and the tracking equipment.

Inertial navigation is the practice of sensing angular and translational acceler-

ations to calculate current position. It has been used in ships and airplanes on a

macro scale for decades. Large-sized inertial navigation units can use spinning gy-

roscopes or laser gyroscopes to sense rotation and stabilize a platform on which lin-

ear accelerometers are placed. Unfortunately, small-sized inertial position tracking

units are too small to use the same kind of actively-stabilized platform. They typ-

ically use Micro-Electromechanical Systems (MEMS) gyroscopes and accelerome-

ters to sense angular and translational acceleration. They have no active stabiliza-

tion, however, so any errors in measurement and calculation accumulate and cause

the position estimate to diverge from the actual position more and more with time.
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This “drift” is usually quite significant, and is why these sensors are almost never

used alone, but instead with other absolute positioning systems.

Methods using a direct mechanical linkage to sense position and rotation are

the most direct and probably the easiest to understand. The basic idea is to have the

object being tracked connected to a fixed base at all times by a jointed mechanical

arm. The angular position of the joints of the arm can be recorded, and together

with knowledge of the length and geometry of the arm, the position of the tip of

the arm can be calculated. This method is very accurate. It also allows for the

possibility of introducing force-feedback to the arm to allow haptic feedback to the

user. Unfortunately, the main drawback to this approach is that it is cumbersome.

Because a mechanical arm is attached to the object or instrument being used at all

times, freedom of movement is limited. The inertia and physical space taken by

the arm can be encumbering, preventing natural movement of the object by the

user.

The remaining method of position tracking is by use of optical cues. The “holy

grail” of optical tracking would be a device that can track position and rotation by

looking at natural objects in the environment only. However, most trackers that

are commercially available use artificial beacons such as LEDs as landmarks. By

selectively turning on or off each LED, an optical sensor can sense its position rel-

ative to a particular LED. By using multiple views of the same LEDs, the position

and rotation of the sensor with respect to the beacons can be extracted.
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The best example of a sensor capable of tracking multiple LEDs with accuracy is

the Highball Tracking System [56]. It consists of arrays of infrared LEDs mounted

on the ceiling and a single tracker to be mounted on the object being moved. The

LEDs are activated one at a time. The tracker unit consists of 6 photosensors with

different views of the ceiling. The photosensors have IR filters which remove all

visible light, allowing mainly just the light from the infrared LEDs to pass. By

using lateral-effect photodiodes, the centroid position of one spot of light can be

found. The system works because most ambient light is filtered out, and using

the assumption that the IR LED active at any given time is the dominant source

of IR in the environment. Using the centroid positions from the photodetectors,

and a statistical computational framework, specialized hardware can computer

centroids at 1500 positions/second.

The Highball Tracking System is designed for a wide-area deployment, with

rows and rows of LEDs mounted on the ceiling to be effective. The specialized

hardware necessary to compute positions as quickly and as accurately is very ex-

pensive, even with mass production. While the Highball System is optimized for

very careful and fast position tracking for uses such as head-mounted displays,

the requirements for a desktop 3-D mouse are not nearly as rigorous. For the more

limited area of operation of the desktop, a solution based on the centroid tracker

may be effective, more economical, and require less hardware on the object being

tracked.
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A DPCT imager based 3-D mouse would work by using two or more DPCT

imagers viewing the same instrument or object being manipulated by the user

[57]. The Highball system places the sensor on the tracked object. In a DPCT

imager system, only tiny LED beacons need be on the tracked instrument, instead

of the 7cm-diameter, 7cm-high sensor cylinder of the Highball System. LEDs are

widely available with sub-millimeter dimensions, fitting on very small tools. With

very thin wires or even wireless activation, the LEDs can blink in a sequence that

will allow two cameras to locate the LED in 3-space using simple stereo vision

techniques. The math to find depth from displacement is undemanding, and any

more cameras would serve to increase the accuracy of the depth measurement, as

well as guarding against occlusion of view of the beacons by the cameras. With 3

LEDs, a full 6DOF position of the instrument or object could be found.

The opportunity exists to use the tracker in a more active position-sensing

method. By mounting the tracker on a Pan-Tilt base for the camera, an active

tracker could attempt to keep one beacon in the center of the field of view. This

way, a larger area could be viewed by more precision, because the optics for the

camera could be made more telephoto, enlarging the view of the beacon. The an-

gles of the Pan and Tilt (altitude and azimuth) would be the coarse measurement

of the direction of the beacon, and the position noted by the tracking imager within

its field of view would add the fine angle information. By keeping the beacon near

the center of the field of view, nonlinear effects such as lens distortion could be
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kept to a minimum, while the relatively linear and accurate rotational position of

the camera mount would allow for good position measurement over a wide area.

With this method, a wide-area tracker with good precision may be possible.

Because the DPCT imager also includes a full APS imager, real-time video can

also be obtained with little extra cost. For person tracking, the added value of live

video is obvious. In addition, more complicated processing such as gesture recog-

nition or object identification could be carried out in the PC. With the combination

of ultrasound and sensor fusion techniques, even more 3-D spatial information

about the scene is available.

4.6 Next Generation Imager

The general concept of the DPCT imager is to use an application-specific imager

and processing to increase efficiency. By optimizing the design for specific tasks,

\irrelevant data can be eliminated and power consumption reduced. As stated

before, the DPCT imager uses temporal changes or the absence of change in the

scene to make decisions about the relative importance of the data. For a stationary

camera view with moving objects, most of the pixels will not change in time and

will be considered “unimportant”. By concentrating on the other dynamic pixels,

processing resources can be allocated where they are most needed.

Reducing this idea to its most basic kernel, the DPCT is an imager that performs
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data compression based on movement. If one is only interested in reduction of

data, the essence of this method provides an excellent reduction of data with very

little computation. In fact, one could call this type of compression “Data Triage”,

because only pixels that are important are allowed to use limited communication

and processing resources. Mathematical transformations are not being carried out

on the entire image, but rather decisions are being made that gate which parts

of the image receive attention. It is a basic metric, but one that lends itself well

to extremely efficient coding of the image, and integration into the image sensor

itself.

Compression on the imager was first implemented in the most way: by plac-

ing formerly separate imager and digital compression units on the same chip. The

original appeal of APS technology was that formerly separate imaging, digitiza-

tion, and processing units could be put on the same piece of silicon to make a

“Camera-on-a-Chip” [42]. As engineers became more comfortable mixing pix-

els and processing, they were naturally led to closer coupling of image reception

and image processing blocks. One approach that emerged is to process multiple

pixels in parallel as they are read out (row-by-row, for example) [58, 59, 60]. In

the strictest definition of “focal-plane processing”, processing circuitry is actually

placed inside of the imaging pixel array. This approach can be thought of as the

ultimate intertwining of image sensors and processing, and has been traditionally

used in computer vision applications where feature extraction takes priority over
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image quality [61]. However, there were some significant attempts to construct

an imager with focal-plane processing for high-quality imaging [62, 63, 60]. These

notable examples offer methods for image compression. They use parallel input

data directly with parallelized compression algorithms, eliminating the inefficient

serialization of data required by most imaging systems. Leon [60] implemented a

spatial compression, producing data only when a pixel differs significantly from

its spatial neighborhood. Aizawa [62] implemented a chip with per-pixel process-

ing to extract temporal changes and conditionally output only those pixels that

changed since the last frame. Unfortunately, Aizawa’s implementation uses a very

large pixel. From the lack of subsequent articles on the architecture, it appears as if

this may have been a very practical problem which hindered further development.

Leveraging the low-transistor-count design of the DPCT centroid-tracking pixel,

a next-generation chip has been constructed by Mallik, myself and others, using a

similar topology but oriented toward compression based on temporal change [1].

This type of compression is called conditional replenishment [64]. The new chip

used a more hybrid approach than Aizawa, adding a small amount of the circuitry

to the pixel, but using circuitry outside the array as much as possible to do the bulk

of computation on readout. The benefits of this are: circuit elements do not have

to be duplicated for each pixel, extra power for these computation circuits is only

drawn when the pixels are accessed, and the fill factor of the array is also increases.

Of course, computation on readout decreases the amount of continuous parallel
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Figure 4.1: Schematic of the Temporal Threshold Change Detection Imager. Detail
is pixel with selected edge circuitry. (Courtesy U. Mallik [1])

processing possible, but for this application such processing isn’t necessary. Be-

cause this compression is based on the temporal response of each individual pixel

and not its neighbors, there is no need for all pixels to compute simultaneously.

The pixel schematic is shown in Figure 4.1. The pixel uses 2 explicit capacitors

and 6 NMOS transistors. This is far less than the 29 pixels, both NMOS and PMOS,

and two explicit capacitors used in the design by Aizawa. Each pixel in the Tem-

poral Threshold Change Detection Imager (TTCDI) is 25.2µm × 25.2µm, whereas

the previous pixel by Aizawa was 170µm × 170µm. Of course the process used for

the Aizawa chip had a larger feature size. To compare both pixels designs using
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their respective scalable rules, λ = 1µm is used for Aizawa and λ = 0.35µm for

the TTCDI. With lambda-based rules and given the same process, the pixel of the

TTCDI still would use a mere 18% of the area of the older pixel.

The temporal detection of the TTCDI occurs during readout. At the end of

an APS voltage read, the APS integration voltage is stored on capacitor CAPS in

a similar manner as the current light level was in the centroid-tracking pixels of

the original DPCT imager. The inverter is reset, setting input voltage equal to

output voltage at the trip point of the inverter. The difference between the trip

point and current APS voltage being read out is then stored across CAPS. When

the same pixel is being read on the next frame, if the new APS integration voltage

is higher or lower than before, the input of the inverter will be higher or lower

than the trip point, causing the output of the inverter to go low or high, respec-

tively. The ingenious addition of capacitor Ccomp adds additional flexibility to this

scheme. By changing the voltage Vcomp to be slightly higher or lower than the

state it was in when the last APS integration voltage was stored across CAPS, the

threshold can be moved to be a fixed amount higher or lower than the old thresh-

old. This allows testing the output of the current APS voltage against multiple

voltages related to the original APS voltage. This capability is used to implement

true change detection with a threshold for change. By comparing the VAPS(frame)

against VAPS(frame−1)+∆V1, and VAPS(frame−1)−∆V2, three regions are defined:

significantly lower voltage, not significant voltage change, and significantly higher
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voltage. What amount of change is “significant” can be controlled by the value of

∆V1 and ∆V2. These external control voltages allow for a flexible definition of light

intensity change. The information can be used from these two comparisons to

gate the transmission of the current pixel value. If no change is detected, the chip

doesn’t bother to transmit and convert that pixel to digital. If it does see significant

change, the pixel is reported.

Not only is power conserved that would be spent in an ADC, but the power

used by the drivers to transmit precise analog or fast digital data off-chip is elimi-

nated also. Thus, within the same time and power budget, a much larger array can

be read because it is unlikely that 100% of the pixels will need to be transmitted

from each frame. In fact, for a stationary camera and head-and-shoulders view of

a person, typically less than 10% of the pixels will need to be updated in a given

frame [65].

In addition to change-detection, the Change Threshold chip is flexible enough

to allow for other sophisticated modes of operation. If instead of sampling the pre-

vious APS voltage the original reset voltage is sampled instead, true Correlated

Double Sampling is possible. Only when the reset voltage is sampled before the

final integration voltage is the thermal noise of the two voltages truly correlated.

Normally, as an expedient shortcut the reset voltage is sampled after the final inte-

gration voltage. This imperfect double sampling corrects for 1/f noise and fixed-

pattern noise only. Because the TTCDI can store an extra voltage for every pixel,
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this storage can be used to keep a copy of the original reset voltage and execute

true correlated double sampling.

Also, because of the flexible method of adjusting the threshold of the compar-

ison, an arbitrary number of comparisons can be executed using multiple Vcomp

voltages. Using the original reset voltage as the first stored voltage, we can ex-

ecute any number of separate comparisons, resulting in binary output data for a

pixel-level Analog-to-Digital conversion. This operation has been demonstrated to

work at 6 bits per pixel in laboratory tests.

4.7 Summary

From these examples, we can see the major advantages of the DPCT Imager

demonstrated. Primarily, it provides a power efficient way to carry out imag-

ing and computation. It also allows speed improvements, including increased

throughput and near-zero latency. Because of this dual quickness, the imager can

be used in creative applications where visual sensing is placed within a feedback

loop. The low-latency, near-instantaneous operation is an especially important ad-

vantage over traditional computation methods, preventing instability and allow-

ing faster loop speeds.

The keys to these advantages are direct access to the imaging array and application-

specific processing optimized for change-detection. By bypassing the serialization
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and analog-to-digital conversion parts of traditional imaging process, efficiency

of computation is boosted. A next-generation chip using the same techniques for

video compression has been constructed. Using similar design methodology, it has

also demonstrated high-performance operation with frugal use of resources.
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Chapter 5

Sonar Bearing Angle Estimation

Using Spatiotemporal Frequency

Filters: Theory and System

Architecture

5.1 Introduction

Shortcomings of traditional array processing techniques have been detailed in

Chapter 1. To address these shortcomings, I have developed an approach for ar-

ray processing which is optimized for the task of determining the location of the

signal source. This method, spatiotemporal frequency filtering, utilizes a bank of
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bandpass filters in space and time. Each spatiotemporal filter includes one spatial

bandpass filter followed by one temporal bandpass filter. When applied to array

signals, each filter is sensitive to a particular wavefront velocity determined by its

temporal and spatial bandpass center frequencies. As will be shown, the veloc-

ity of a wavefront across the array is directly related to the angle of incidence of

the incoming signal to the area. Different filters can be designed to be sensitive

to different wavefront velocities and hence different incident angles. An ensemble

of different spatiotemporal filters can be examined in parallel to determine which

filter has the maximum response, and consequently the incoming bearing angle of

the input signal. By only utilizing simple bandpass filters for the bulk of the pro-

cessing, the digitization step of most traditional array processing can be skipped

entirely, reducing power and system complexity. I will show that I can use this con-

figuration to realize my design goal of a system capable of 1◦ accuracy. The chip I

designed that accomplishes all of this processing is the Spatio-Temporal Frequency

Array Processor, or STFAP.

In addition, because the system can use any zero-crossing of the carrier wave

for wavefront velocity extraction, it is not bound to making just one observation

per sonar pulse. This differs from single-sensor or array Time Of Flight (TOF)

sonar systems, which only observe the time of the onset of the pulse envelope of

an ultrasonic return. In my system, multiple observations are possible from the

same pulse at different times. In a single object case, this can improve accuracy by
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using redundant measurements during the length of a sonar return. In a multiple

object case, different returns from the same output sonar ping can be analyzed

separately to extract bearing directions to all objects. As long as the objects have

different ranges from the sensor, their echoes will be separated in time and thus

able to be processed in sequence as they return to the sensor array. It takes some

time for an object’s wavefront to move from one end of the array to the other,

and two pulses cannot be measured on the array at the same time. Consequently,

the necessary object depth separation is directly proportional to the length of the

array. A smaller array, such as one based on MEMS technology, would actually

help make this requirement less stringent, allowing objects to be more closely-

spaced in depth.

Most regular heuristically- or statistically-processed arrays, (including those

referenced in this thesis,) process information based on the range information of

their ultrasonic sensors only, and would thus be confused by multiple objects. If

they were able to process them as individual objects, they would still need separate

pings to analyze each separate object. Because my system is able to extract more

information from a single ping, the number of pings to image an environment is

lower than other methods. This has an especially beneficiary impact on power con-

sumption, due to the relatively high power needed to broadcast and successfully

receive an ultrasonic burst in an attenuating medium such as air. Fewer ultrasonic

bursts always take less power than more bursts.

105



5.2 Spatiotemporal Theory

Spatiotemporal frequency filters are also known as velocity filters, because they

can be tuned give response for particular velocities [61]. Velocity filtering as a con-

cept comes from study of the retinal vision processing in certain mammals [66],

where such processing is believed to take place. In this case, the velocity refers

to the projection of object images passing over the retina focal plane. The earliest

spatiotemporal-frequency filtering models were constructed not only for function-

ality, but also to be biologically-plausible processing systems [67, 68, 69].

The microphone array of my system is not looking for moving objects—it is

looking for moving wavefronts. A signal wavefront will appear to be moving

across the array if the source of the signal is from a direction closer to one end

of the array than the other. Even though the signal source is stationary, the emitted

signal will appear to cascade across the array with some velocity. The value of this

velocity can be extracted to find the bearing angle of the original signal source to

the array. Simple geometry and Fourier theory are all that is needed to understand

the processing involved.

The time delay between the signal reaching one sensor and the previous sensor

is equal to the extra path length divided by the speed of sound, or

textra =
xextra

vs

=
x0 sin θincident

vs

(5.1)

106



θincident

x0

θincidentxextra

Figure 5.1: Two sensors receiving signal copies of the same far-field source.

Here vs is the speed of sound, xextra is the extra path length traveled by the

wave, θincident is the incident angle off normal to the array, (which can be positive or

negative,) and x0 is the inter-sensor spacing. See Figure 5.1. The apparent velocity

across the array due to a certain incident angle can then be derived:

varray =
x0

textra

=
vs

sin θincident

(5.2)

For shallow angles, (90◦ off-normal,) the apparent velocity is minimum, and

equal to the speed of sound. At an angle normal to the line of the array, (0◦,)

velocity appears infinite.

The spatiotemporal method for determining velocity is easiest to understand

when starting from a space-time representation of a moving object. Figure 5.2

shows that a moving object will trace a line in a graph of space and time. The

velocity of the object (x/t) will be equal to the slope of the line in this representa-
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Figure 5.2: Velocity represented in space-time and frequency space-time. Illus-
trated is the response of spatiotemporal frequency filters sensitive to bands (re-
gions) in the ωx-ωt plane.

tion. If we suppose this object is an impulse, (or delta-function,) and take a 1-D

Fourier transform in space or a 1-D Fourier transform in time, the temporal fre-

quency spectrum or the spatial frequency spectrum will be perfectly flat. Equal

energy will be present at all frequencies. However, more interesting behavior can

be noted when a full 2-D spatial/temporal Fourier transform is performed. Energy

is not distributed evenly over the whole ωx-ωt plane. In fact, an impulse tracing a

straight line in the x-t plane will also have energy over only a straight line in the ωx-

ωt plane. [70] shows a derivation of a similar relationship: the three-dimensional

(2-D spatial and time) Fourier transform of a plane in order to illustrate spatiotem-

poral frequency spectrum of movement in 2-D images.

The inverse of the slope of the frequency-domain line, or ωt/ωx, is also equal to

the velocity of the impulse. By cascading spatial- and temporal-frequency band-

pass filtering, spatiotemporal filters can be constructed sensitive to specific areas
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of the ωx-ωt plane. It is possible to use spatiotemporal filters with separable spatial

and temporal responses, reducing each filter to a spatial bandpass filter cascaded

with temporal bandpass filter. Using these filters, it is possible to sense if a velocity

line is passing through a particular region.

This approach is advantageous for some important reasons. The effects of noise

are reduced because each filter responds to a limited frequency range, which limits

the total energy of received noise. Highpass filtering, for instance, has a well-

known sensitivity to noise because it responds to all high frequencies, even those

out of the useful signal band. In addition, multiple spatiotemporal filters whose

areas of sensitivity overlap the line of movement will each give a response. By

considering the ensemble of filter responses, an estimate of the velocity can be

extracted as a weighted average of the filters involved. This helps the combined

system to be more robust. It has been shown [71] in simulation that this approach

can tolerate moderately low signal-to-noise ratios, which is demonstrated in Figure

5.3.

The same technique can be used with other objects besides an ideal impulse, but

the resulting spatial and temporal spectra may not be flat, and may even be band-

limited. In these situations, extra care is necessary when decoding the output of the

filters. Amplitudes of the filters may be different than expected, or non-existent if

the spectrum of the object has no energy in the spatial or temporal frequency-band

being measured.
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Figure 5.3: Simulation results showing actual angle/reported angle relationship in
the presence of different quantities of random noise.

In my target application, I are looking for the angle bearing of a short burst of

an ultrasonic frequency. It is convenient to convert the modulated carrier into a

plain square pulse by special preprocessing described in Section 5.3.3. A square

pulse does not have a flat frequency spectrum, but its spectrum is broad enough

that some energy will be present at all temporal and spatial frequencies within

range of our processing.
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Figure 5.4: Block diagram of the entire system. The block labeled “Pre” is the
preprocessing block, “S” denotes spatial filters, and blocks labeled with “T” are
temporal filters.

5.3 System Architecture

5.3.1 System Overview

A block diagram of the entire STFAP system is shown in Figure 5.4. Starting

with the microphone array, all signals pass through the preprocessing block and

are copied to each spatial filter. The output of each spatial filter is then copied

to four temporal processing blocks, which leads to 16 separate outputs from the

entire system.
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Figure 5.5: Photo of microphone array module.

5.3.2 Microphone Array

At the beginning of an array processing system are the actual sensors. My mi-

crophone array module consists of a printed circuit board with mounted 2.5mm-

diameter microphones, and simple two-pole highpass filters with amplification

following each microphone to remove audio frequencies and boost the signal. The

microphones themselves have an intrinsic acoustic frequency limit, causing re-

sponse to roll-off at high frequencies. There are nine microphones, with 3.3mm

inter-microphone spacing and a total combined baseline of 26.5mm. This is a small

array, but I envision applying this processing to much smaller arrays. A goal of the

project is to miniaturize the microphone array to the point where the entire array

can be one MEMS device, which will improve uniformity of microphone structure

and response, as well as taking up much less space.
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5.3.3 Preprocessing

As mentioned in the introduction, the time resolution demanded to accurately

measure bearing on a small-baseline requires sub-microsecond precision. Varying

gain and phase-delay of the environment, microphones, demodulation, and ampli-

fier circuits make pulse envelope detection a highly error-prone way to detect sub-

microsecond delays. In addition to these errors, the carrier frequency itself poses

a problem: to reduce attenuation, a near-audio frequency of 40kHz was chosen.

The small available bandwidth at this low frequency does not allow a wide-band

square pulse to be modulated on it as a pulse envelope. Only more slowly-varying,

band-limited shapes are available, making envelope-detection trickier.

Instead of sensing the delays in the edges of the sonar pulse, a more syn-

chronous approach was found to meet the demanding time requirements. The

current method is similar to existing phased array techniques by using the zero-

crossings of the array signals as time references. Digital square waves are gener-

ated from the zero-crossings of the received ultrasonic input signals. These digital

square waves could, in theory, be sent directly to the spatiotemporal processing

unit. They would appear as a train of pulses, which by superposition would be

as valid to a linear filtering system as a single pulse is. However, the implemen-

tation details of my spatiotemporal filtering system as described in Sections 5.3.4

and 5.3.5 necessitate that only one pulse at a time be “visible” on the array at a

time. If one array input is displaying the digital “high” of a pulse, the other array
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Figure 5.6: Ensemble of pulses are required to have tall1 > 0 and tall0 > 0.

inputs must either be relaying a digital “high” of the same pulse or show no activ-

ity. Figure 5.6 illustrates the equivalent requirement that there be some amount of

time when all array inputs are “high,” and some amount of time when all array

inputs are low. Because of this requirement, the last part of the preprocessing sys-

tem generates widely-spaced long pulses from the accurate timing information of

the square wave zero-crossings. The intermediate square waves themselves have

too short of a period to meet these timing restrictions. Figure 5.7 shows the trans-

formation of a raw microphone input waveform to a long pulse output.

The zero-crossing detector used in the testing of the STFAP is a simple threshold

circuit, comparing each microphone’s input signal with a fixed zero voltage. This

method produces a square wave output that has the same zero crossings as the

original sine wave input. It is a basic circuit implemented off-chip, to enable char-
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Figure 5.7: Preprocessing waveforms.

acterization of the current chip. Future chips will have a more sophisticated zero-

crossing detector on-chip. The planned circuit includes adaptive “zero” thresh-

old and a separate signal-strength threshold, to disable zero-crossing detection for

very small signals or noise.

Fulfilling the requirement that there be only one pulse visible to the array at

a time is not as trivial as it might appear on first glance. The procedure can be

summarized as follows:

1. Identify the edges in all sensor responses that correspond to the same edge

of the signal source. Collectively, I’ll call these edges “correlated edges”.

2. Start the output long pulses from these edges.

3. Wait.

4. Finish the output long pulses on correlated edges.
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5. Wait.

To begin with, the relevant inter-element delays for the array must be discussed.

The longest delay between two microphone signals occurs when the incoming

sound is a full 90◦ from the array normal. At this bearing angle, the incoming

sound is travelling in line with the line of the array, and the inter-sensor signal

delay is just the inter-sensor distance divided by the speed of sound. For adjacent

sensors 3.3mm apart, this delay comes out to 9.7µs, and the delay for sound to

travel the entire length of the STFAP array is 77.9µs. The period of the utilized

40kHz ultrasonic frequency is 25µs. It’s important to note the two maximum de-

lay times with respect to this ultrasonic period. First, correlated edges of adjacent

sensors will be delayed less than half of a full input period. This means correlated

edges on two adjacent sensors can be identified, because it is known that a ris-

ing (falling) edge on one sensor corresponds to the closest in time rising (falling)

edge on an adjacent sensor. In contrast, the response of sensors at the ends of the

array can be delayed over three full periods of the input signal. So viewing two

sensors at opposite ends of the 26.5mm array and identifying correlated edges is

impossible with a 40kHz waveform. The delay could be anywhere between 0–3

wavelengths long, depending on the bearing angle.

To make the long pulses output by the preprocessing match the input wave-

forms in sequence and timing, I have created a simple digital system. The system

enforces local sequencing by matching correlated edges on adjacent sensors. When
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all local conditions of the overlapping pairs of adjacent sensors are combined, the

nine output pulses can be correctly queued so that they all begin on correlated

input edges. This ordering logic eliminates the problem of the unknown number

of wavelengths between the two farthest sensors, because it enforces local order-

ing for all adjacent pairs in between these two sensors. The output pulses, once

properly begun, merely count a number of input wavelengths for the logic “high”

duration, and a number of input wavelengths for the following logic “low” dura-

tion. In this way long pulses are generated that have the exact same timing as the

input signals. All fine timing such as noise-induced jitter and other artifacts are

preserved. The only thing this part of the preprocessing does is ensure that output

waveforms are sequenced correctly and occur in same order as correlated edges

appear to its inputs.

The ordering subsystem was developed and is implemented on an FPGA. The

FPGA provides a rapid means to prototype algorithms and test them in a real-

world environment. Now that a robust and effective processing strategy has been

determined, integration of this circuit on-chip is the next step in development. The

logic is amenable to non-clocked asynchronous operation, which will allow for

lower-power operation and compact implementation.
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5.3.4 Spatial Filters

The spatial filters accept continuous-time, binary data from the nine sensors,

perform spatial bandpass filtering, and provide continuous-time, discrete value

outputs. Inputs are in the form of digital voltages from the preprocessing unit,

and the output is a variable current.

A linear array of microphones inherently represents space discretely: the length

of the array is being sampled with only nine sensors. As such, the filtering opera-

tion immediately lends itself to discrete data processing techniques. To perform a

spatial bandpass, the nine inputs are convolved with a kernel. The chosen a ker-

nel has nine coefficients, the same length as the number of inputs. Because the

number of coefficients matches the length of the inputs, only one value is output,

and it is also not necessary to apply the convolution kernel to different positions

of the input. Thus the entire convolution reduces to multiplying each input by its

respective kernel coefficient, and summing the results. It is simplified to a vector

multiplication.

The discrete-space filters, shown in Figure 5.8, are constructed of nine variable

current sources, with nine switches. The current sources are bidirectional current-

DACs. Each coefficient value is loaded onto a separate current-DAC, and the corre-

sponding digital input from the array switches the current produced by that DAC

on or off a shared node. The current-DACs and switches perform multiplication

of input binary data to integer coefficients, and the shared node sums all currents.
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Figure 5.8: Spatial filter schematic.

The output is represented as a continuous-time, discrete-level current.

Each current-DAC is represented as a series of binary-weighted currents mir-

rored off the same reference current. Each DAC bit switches its respective current

onto the DAC output if enabled.

5.3.5 Temporal Filters

Spatial bandpass filtering isolates a spatial frequency range. To select regions

of the 2-D ωx-ωt plane, it is also necessary to filter for a particular temporal fre-

quency range. This can be accomplished with temporal bandpass filtering. With

enough spatial and temporal bandpass combinations, the entire ωx-ωt plane can be

spanned by individual regions.

Instead of isolating specific 2-D regions, I first isolate a strip of the ωx-ωt plane

corresponding to a spatial band, as described above. Then, instead of simply fil-
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Figure 5.9: Current-DAC schematic. (Sign circuitry not shown.)

tering again for temporal frequency discrimination, I have implemented a circuit

which performs a frequency-to-voltage function in the time domain. The circuit

that performs this is a simple integrator which is first reset, starts integration at

the first activity on the array elements, and ends after all activity on the array has

ceased. In this way, an estimate of the location of the velocity line is generated in

frequency space from each spatial/integrator pair, instead of merely an ensemble

of filter responses which would require additional processing layers to extract ve-

locity. In addition, an integrator is a much more compact and simple circuit than

a full temporal bandpass circuit. Thus silicon area is conserved and complexity in

the system is reduced, aiding system robustness.

An integrator performs frequency-to-voltage conversion in this case because

of the conditions imposed by my preprocessing and spatial filters. An additional

constraint is also necessary: to restrict the spatial kernels to those that have no
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response to 0 spatial frequency (all sensors high or all sensors low.) Because the

output signal lacks any DC offset, the spatial current output current must also be

rectified so it doesn’t integrate to 0. Within these constraints, a change in the ve-

locity of an edge across the array will only cause time dilation or contraction of

the spatial filter output during the passing of the edge. During the middle of the

pulse, all array inputs are high, and the spatial filter responds with 0 current. f

is defined as a generalized function describing the basic shape of the waveform

produced by a passing edge on the array, due to the spatial filter and preprocess-

ing. The duration of the passing pulse will be inversely proportional to its velocity

passing over the array. t = 0 is defined as the beginning time of a pulse starting

to move across the array. Since integration only occurs during the time an edge

is passing over the array, the end time of integration Tend ∝ 1/varray. In the ideal

case, ωt = ωxvarray, where ωx is the spatial center frequency after spatial filtering,

so additionally Tend ∝ 1/ωt. This mathematical structure allows us to use simple

integration to extract the velocity.

If g(t) is the integral of f(t):

∫
f(t)dt = g(t) (5.3)

then with arbitrary constant B denoting the multiple of 1/ωt that is Tend,

∫ B/ωt

0
f(ωtt)dt =

1

ωt

(g(B)− g(0)) (5.4)
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Substituting the constant D for the expressions containing g():

Vint1 =
∫ Tend

0
f(ωtt)dt =

1

ωt

D (5.5)

From Equation 5.5, I qualitatively argue the inverse relationship between the

temporal frequency and the final output of the integrator. For any ωt, the output

of the integrator is (1/ωt)D, where the constant D remains the same for any ωt. A

more thorough derivation of the precise relationship will be shown in Subsection

5.4.3. The output of the integrator thus gives a value corresponding to the initial

velocity, because bandpass filtering for a particular spatial frequency band has al-

ready occurred, and fully separable spatial and temporal filtering is used. Example

waveforms of spatial output to final integration are shown in Figure 5.10, as would

be the response to a single pulse cascading across the array such as one in Fig. 5.6.

Temporal integration on the STFAP chip was performed for each spatial filter

with four separate capacitance values. A copy of each spatial filter’s current out-

put was supplied to each different integrating capacitance. Capacitance values of

1.5pF, 3.0pF, 6.0pF, and 12.0pF were used. The smaller values enabled more preci-

sion, and the larger values could integrate longer signals without saturating. The

range of integrating capacitances allowed a wide range of input signal speeds, so

that the full range of angles could be processed.
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Figure 5.10: Simulated waveforms: spatial filter output (from bandmedhi kernel),
rectified copy, and final integrated voltage signal.

5.3.6 Sign detection

The spatial filters are even kernels, (they are symmetric,) the output of these

spatial filters is rectified before integrating. Due to these actions, all sign infor-

mation is lost from the analog signal and a separate circuit is necessary to detect

the sign of the input bearing angle with respect to the array. The sign detection

circuit is implemented as a simple spatial filter with an odd kernel function. The

kernel (-1,-1,-1,-1,0,1,1,1,1) is used. It is followed by a current sign-detection circuit

that outputs a digital high or low depending on the direction of the current from

the spatial filter. This current sign-detect circuit’s value is latched after all sensors

show no activity. A pulse moving across the array that ends on one end of the array

will cause a negative current to be last output from the odd spatial filter. Likewise,
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if the pulse is last seen on the other side of the array the spatial filter will output a

positive current last. The sign detect circuit will latch its output of 0 or 1 for each

respective case.

5.4 Theory of Operation

5.4.1 Velocity Determination

The overall goal of the processing system is to find bearing angle by extract-

ing the velocity of a wavefront across the array, or in other words, the array sonic

flow. The relationship of wavefront to velocity to angle is not linear, and in fact

approaches infinity toward 0◦, and the speed of sound toward 90◦ off-axis. Near

0◦, velocities rapidly increase, reducing necessary precision in this region, while

the slope of velocity change near 90◦ is much shallower, causing more precision

necessary to attain my goal of 1◦ of accuracy. The precision necessary for 1◦ ac-

curacy at each bearing angle is shown in the graph of Figure 5.11, expressed in

percentage accuracy (velocity at that angle divided by velocity change over 1◦ at

that point.) As can be seen, the same velocity precision as off-axis angle increases

yields diminishing returns. As such, I limit the metrics of success to an angular

range between -60◦ and 60◦.
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Figure 5.11: Velocity precision necessary for 1◦ precision at each bearing angle.

5.4.2 Spatial Filtering

I start by choosing appropriate spatial filter kernels. Three of my kernels are

kaiser-windowed bandpass filters, and one is a highpass filter. The center frequen-

cies are roughly equally-spaced. The coefficients can be seen in Table 5.1, and the

resulting Discrete Fourier Transform plots are visible in Figure 5.12. It should be

noted that at least in the ideal cases, all of these filters have virtually no response

at 0 spatial frequency. In addition, to use the full resolution of my filters, the coef-

ficients are normalized so that the maximum coefficient for each filter is 63. Con-

sequently, all spatial outputs are not normalized: the “bandhi” filter, because it is

a highpass and not a bandpass filter like the others, ends up having twice the out-

put response. Such differences are easy to scale in later stages if direct comparison

among the spatial filters is desired.
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Filter Name Coefficients

bandlo (2 -17 -32 17 63 17 -32 -17 2)

bandmedlo (3 14 -35 -14 63 -14 -35 14 3)

bandmedhi (-6 13 3 -41 63 -41 3 13 -6)

bandhi (5 -19 39 -56 63 -56 39 -19 5)

Table 5.1: Spatial filter kernels
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Figure 5.12: Discrete Fourier Transform plots of spatial filter transfer functions rela-
tive to each other. Peaks are at 0.4, 0.58, 0.76, and 1 in π-units. 1 π-unit corresponds
to the spatial Nyquist frequency.
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Because the array spacing is v0 =3.3mm, the rightmost tick-mark of Figure 5.12

corresponds to a spatial frequency of 1
2
( 1

3.3
mm−1) or 152m−1. This sets the center

frequencies of the four bandpass filters at 61m−1, 88m−1, 115m−1, and the highpass

filter is at the top of the range at 152m−1.

5.4.3 Temporal Integration

Vint is defined as the final voltage from integration of spatial filter output of a

passing pulse. In the ideal case, the subsequent delay between each edge on any

two adjacent sensors should be identical. As an edge passes over the array, sensors

reading logic-high will increase in number starting from one end of the array and

progressing to the other side. An example: sensor 0 is logic-high, then sensors 0

and 1 are logic-high, then sensors 0 and 1 and 2 are logic-high, etc. The process

continues until all sensors show inputs logic-high at time tmid1. Then at time tmid2

the trailing edge of the pulse will pass over the array, and sensor inputs will go

logic-low one by one starting from the same edge of the array. For example: first

sensor 0 would go low, the sensors 0 and 1 would be low, then sensors 0 and 1

and 2, etc. This continues until all sensor inputs are again logic-low. The current

output by the spatial filters during a passing pulse is:
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ispatial =





ionset(t) if t < tmid1

Imid if tmid1 < t < tmid2

ioffset(t) if t > tmid2

(5.6)

ionset(t) = a0Irefu(t− Ton0) + a1Irefu(t− Ton1)

+ a2Irefu(t− Ton2) + . . .

ioffset(t) = a0Irefu(−t− Toff0) + a1Irefu(−t− Toff1)

+ a2Irefu(−t− Toff2) + . . .

and the corresponding voltage integrated on capacitor Cint:

Vint =
1

Cint

∫
|ispatial|dt (5.7)

Vint =
1

Cint

∫
|ionset|+ |imid|+ |ioffset|dt (5.8)

Here ionset describes the process of a pulse starting to appear on the array, imid

has current Imid for the time when all sensor inputs are logic-high, and ioffset is

the current while a pulse is disappearing from the array. Absolute value is used

inside the integral because of the absolute value current circuit, and the absolute

value can be split between the various current components because they happen

at different times.

An expression is now constructed for the integral of ionset using td as the time

delay between an edge appearing on two adjacent sensors. The following expres-
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sion shows that for the duration of each time td, the current flowing from the spa-

tial filter is an absolute value of the sum of all current-DACs with logic-high input

sensors. The current-DAC current is the value of its corresponding kernel element

multiplied times the current-DAC LSB reference current Iref .

∫
|ionset|dt = |Ireftda0|+ |Ireftd(a0 + a1)| (5.9)

+ |Ireftd(a0 + a1 + a2)|+ . . .

∫
|ionset|dt = Ireftd

8∑

n=0

∣∣∣∣∣
n∑

m=0

am

∣∣∣∣∣ (5.10)

This equation is true for array activity beginning with sensor 0 or activity begin-

ning with sensor 9, because all of the kernels are symmetric. In fact, these symmet-

ric kernels cause the integral of ioffset to be the same as ionset, because ioffsetintegrated

over time is the same integrated sum as an onset pulse moving in the opposite di-

rection across the array.

For Equation 5.8 there are now expressions for ionset and ioffset. The current of

Imid should be equal to 0 with the proper kernel, but in reality it remains as an error

term. This yields the final equation for Vint.

Vint =
2Ireftd
Cint

8∑

n=0

∣∣∣∣∣
n∑

m=0

am

∣∣∣∣∣ + [CintImidtmid] (5.11)

Substituting x0/varray for td, and Verr = [CintImidtmid],
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Vint =
x0

varray

2Iref

Cint

8∑

n=0

∣∣∣∣∣
n∑

m=0

am

∣∣∣∣∣ + Verr (5.12)

or equivalently, with varray = ωt/ωx,

Vint =
x0ωx

ωt

2Iref

Cint

8∑

n=0

∣∣∣∣∣
n∑

m=0

am

∣∣∣∣∣ + Verr (5.13)

Now it has been exactly derived what used to be the arbitrary constant D in

Equation 5.5.

Using Equation 5.2 and varray = ωt/ωx,

varray =
ωt

ωx

=
vs

sin θincident

(5.14)

Substituting this equation into Equation 5.12 or 5.13, and putting Aspat in place

of the awkward summations:

Vint =
2x0IrefAspat

vsCint

sin θincident + Verr (5.15)

Aspat =
8∑

n=0

∣∣∣∣∣
n∑

m=0

am

∣∣∣∣∣ (5.16)

To determine incident angle from voltage output from the STFAP chip, the in-

verse form of Equation 5.15 it used.

θincident = arcsin

(
(Vint − Verr)

vsCint

2x0IrefAspat

)
(5.17)
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Chapter 6

Sonar Bearing Angle Estimation

Using Spatiotemporal Frequency

Filters: Results

Performance of the STFAP chip was computed from both computer-generated

ideal waveforms, and from real-world signals from the microphone array in Fig.

5.5.

Computer-generated waveforms consisted of digital pulses fed directly to the

chip, identical to what the preprocessing system would output for perfect incom-

ing array signals. For tests with actual ultrasonic transmission and reception, an

ultrasonic beacon was placed 65cm away from the microphone array receiver. The

beacon output a continuous tone, and array output was examined for different
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angle orientations of the microphone array with respect to the signal path.

Two generations of STFAP were designed and fabricated. Results from both

are detailed here. The chief improvement to STFAPv2 over STFAPv1 is much better

current matching due to careful circuit design and layout. The linearity and match-

ing of current DACs and current mirroring circuits in general improved greatly be-

tween Generation 1 and Generation 2. In addition, the preprocessing functionality

implemented in an off-chip FPGA in STFAPv1 was fully integrated into STFAPv2.

While the fundamental algorithms for sequencing pulses from square waves are

very similar, the integrated preprocessing of STFAPv2 does not use a sampled

clock as was necessary in the FPGA to be compatible with its architecture. The

logic of the Generation 2 STFAP chip worked satisfactorily, eliminating the ex-

tra FPGA and support circuitry previously required by Generation 1. For each

stage of the results, both Generation 1 and Generation 2 results will be reported.

In addition, Generation 2 of the STFAP improved the design of the postprocess-

ing circuitry which combines the separate digital sign information with the analog

magnitude to produce analog signed outputs.
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6.1 Preprocessing

6.1.1 STFAPv1

Preprocessing by the zero-crossing detector and FPGA was extremely satisfac-

tory and robust. Over an array angular bearing range of -85◦ to 85◦, the prepro-

cessing functioned with few glitches. Due to the FPGA architecture, operation was

necessarily synchronized with a global clock. The 50MHz FPGA clock allowed out-

put pulse edges to be sampled to within 20ns of the edges of the input waveforms.

In the future, continuous-time digital circuits will be used, integrated onto the full-

custom ASIC. For prototyping ease, however, an FPGA with a very fast clock is a

close approximation to the final goal of using continuous-time, asynchronous self-

timed circuits for preprocessing. Such circuits will limit activity to only those times

in which an input signal edge occurs, greatly reducing power consumption of this

block. Additionally, input timing jitter from sampling time-quantization will be

eliminated, and signal time resolution will not depend on the speed of a (power-

using) global clock.

Output pulse edges were demonstrated to coincide with correlated edges on

the inputs. The FPGA code was even able to cope with timing jitter in the input

signals large enough to cause one input signal to appear out of sequence with its

neighbors. In this case, the output pulse was also out of sequence with its neigh-

boring output pulses, to uphold the relationship of output pulse timing to input
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signals, even when they included timing errors. In short, the preprocessing per-

formed transparently, except for the generation of longer pulses.

6.1.2 STFAPv2

In STFAPv2 this preprocessing logic was completely internal to the chip and the

FPGA was not used at all. Results of the integrated preprocessing unit matched

the FPGA-based performance well. The only divergence in behavior was related

to the duration of the created pulses. Both units use counters based on the incom-

ing sensor waveforms to make output pulses equal to a certain number of input

carrier wave periods. Whereas the FPGA unit time-sampled the state of the in-

coming waveforms at a rate equal to about once every 20ns, the integrated logic

receives an non-time-sampled binary signal directly from the microphone com-

parators. Because of this, the edge-triggered counters are prone to glitching if the

microphone signal is very noise around the zero-crossing. This results in isolated

output pulses that are shorter than they should be, throwing off the entire pulse

sequence. In the FPGA case, the sampled nature of the input signals gave a natural

debouncing in 20ns chunks of time, and prevented the many of the input glitches

from propagating to the counting unit.

One solution which was considered was to use hysteretic comparators on the

microphone inputs to the chip. This was considered for Generation 2, but it was

decided that there was too much risk in disturbing the precise location of the
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zero-crossing threshold to use a hysteretic comparator. Errors in the zero-crossing

threshold would translate to timing errors.

Another, possibly safer solution is to use digital one-shot type circuits to pre-

vent the transition of pulses going to the counters until a sufficient debouncing

time has passed. Such circuits may minutely affect the timing of the edges, but as

long as the timing modification is only routed to the counters this is not a problem.

The counters only determine coarse pulse length, and do not affect accurate timing

of the onset and offset edges of the pulses, which are directly linked to the edges

from the comparators.

6.2 Spatial

6.2.1 STFAPv1

The performance of the spatial filter current-DACs is illustrated in Figures 6.1

and 6.2. These graphs show data from every current-DAC on the chip. The cur-

rents in the plots are only positive because shown is the DAC response before

application of the sign bit. There are a total of 36 current-DACs in 4 spatial filters.

From the graphs of current vs. kernel value, it is apparent that matching is an

serious issue. Both inter-DAC matching and linearity suffer from poor matching

between transistors. All transistors that were part of the same mirror were in the

same local area, and layout techniques such as dummy transistors were used in or-
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Figure 6.1: Current output of all current DACs on chip for positive kernels, 1st

Generation STFAP.

der to make the electrical and physical environment of each transistor similar to its

counterparts. However, these efforts were not enough. From the experience with

these first generation chips, extreme attention to layout, and the use of common-

centroid layout techniques were clearly necessary to improve current-DAC linear-

ity and matching.

Statistics from the whole chip show that linearity is passable, with an overall

RMS error of less than 3nA from a linear fit of each curve. As is expected, most

non-linearities happen at major bit boundaries. Inter-DAC matching for each ker-

nel coefficient stays in the range of 10–12%, measured by the standard deviation

divided by the mean at each current value. This mediocre current-DAC match-

ing is also representative of inter-kernel-element matching, as well as inter-filter

matching.
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Figure 6.2: Collective statistics (mean ± std. deviation) of all kernel DACs on chip,
1st Generation STFAP.

It is worth noting that ultimately exact matching is not important, because ker-

nels are programmable and set at runtime. Characterization of each current-DAC

allows fine-tuning its current output by simply changing the number written to it

during initialization. Instead of the ideal kernel value, a value is written match-

ing the actual current output desired. In normal operation, kernel values are only

written once, so this is not an undue burden. Also, all current-DACs only need be

characterized once to determine process-induced mismatch.

Other factors affecting performance of the spatial filter subsystem are inherent

current DC offsets of the filter outputs and the performance of the absolute value

circuits. Mismatch again caused a wide range of DC offset currents from the fil-

ters. While ideally there should be no inherent DC current from a spatial filter, all

of the filters exhibited different offsets due to mismatch. It is difficult to separately
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analyze the absolute value circuits and the sign circuits in the current-DACs. The

combination of the current-DAC sign circuit and the absolute value circuit pro-

duced currents within 10% of the positive current-DAC values.

From Figure 6.1, it is apparent that a few traces are on a separate branch from

the majority of the DAC response curves. Most of these errant plot-lines are from

the same filter. The other three filters on chip exhibited better matching, and these

three were used for the rest of the tests. Matching and linearity statistics for this

filter were similar to statistics for the chip as a whole. In the rest of this section

data from this filter will be presented.

6.2.2 STFAPv2

The performance of the spatial filter current-DACs is illustrated in Figures 6.3

and 6.4. In the second generation chip, due to very careful circuit design and lay-

out, matching increased by almost a factor of 2. Inter-DAC matching for each

kernel coefficient increased to 5-6% for most of the kernels, again measured by the

standard deviation divided by the mean at each current value. The graphs show a

much tighter clustering of current traces. This was the norm for all chips, and all

chips performed well. In contrast, some chips from STFAPv1 were actually unus-

able because mismatch caused some non-robust circuits to be completely outside

of their usable operating range.

An additional feature of the second generation chips was a separate trimming
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Figure 6.3: Current output of all current DACs on chip for positive kernels, 2nd

Generation STFAP.
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Figure 6.4: Collective statistics (mean ± std. deviation) of all kernel DACs on chip,
2nd Generation STFAP.
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current DAC on the output of the each kernel element current DAC. With this

trimming circuit, any DC offsets could be completely eliminated. However the

matching of most kernel DACs in this generation of chip had improved so much,

that trimming more than 1LSB of the kernel magnitude was never necessary.

6.3 Temporal

Integration of the values proceeded correctly. The only minor problem was

that, due to layout imperfections in the Generation 1 STFAP chip, the ratios of the

various sizes of integration capacitors did not match the intended ratios. Most

likely, extra parasitic capacitances added to explicit Poly1-Poly2 capacitances and

affected the actual final capacitive ratio. This phenomenon is discussed further in

Section 6.6.

As will be shown below in Section 6.6.1 the capacitance matching for Genera-

tion 2 was able to be characterized much more explicitly due to improvements in

circuit design and experimental setup. The deduced capacitance values from the

data in that section show capacitive ratios mostly consistent with designed val-

ues, with slight deviation from design value for the 1.5pF capacitor. This could

be because it is the smallest value, involving the fewest constituent sub-capacitor

units, and thus more prone to error. Or it could simply be because the experimen-

tal curves for this smallest capacitance involve the fastest signals and are the most
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difficult data points to capture. The number of data points available for analysis

for the 1.5pF integrating capacitance was much less than the other capacitances,

which could also lead to errors in characterization.

6.4 Sign detection

The sign-detect circuit functioned satisfactorily in both STFAPv1 and STFAPv2.

For STFAPv1, sign output was always correct so far as it was able to be measured.

The angle at which sign changed from plus to minus was as close to 0◦ as could be

determined with the experimental setup.

Because of the time resolution of the experimental setup for generating syn-

thetic waveforms increased five-fold between STFAPv1 and STFAPv2, the second

generation chip was able to be more precisely studied. Problems were found that

although the sign-detection circuit functioned properly in most instances, at near-

normal (near 0◦) angles. Where the sign changes, wavefront velocity across the

array is extremely fast. It appears that the kernel-based sign-detection circuit re-

sponds too slowly, and gives erroneous results very near 0◦. For an example of this

behavior, see Figure .
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Figure 6.5: Illustration of Post-processing unit correctly converting unsigned ana-
log magnitude voltage to signed analog voltage, incorporating sign-bit generated
on chip. Results from 2nd Generation STFAP.

6.5 Postprocessing

Because of improvements to the circuit design, testing of the postprocessing

unit were successful in STFAPv2 where they were generally unsatisfactory in STFAPv1.

For an example circuitry to combine digital sign-bit with analog magnitude, see

Figure 6.5. The unsigned curve has been generated by passing actual synthesized

digital waveforms to the chip microphone inputs. (See Section 6.6.1)
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6.6 Entire system performance

6.6.1 Computer-Generated Input Test Signals

The first test of STFAP system performance was conducted using ideal digi-

tal signals supplied to the chip from a computer. The waveforms were long digital

pulses simulating the output of preprocessing. Different array wavefront velocities

were simulated by the synthesized signals. This test was a baseline characteriza-

tion of the processing circuitry on chip.

6.6.1.1 STFAPv1

The first tests of the synthetic waveforms was performed on the first generation

of STFAP chip. This first version of the chip suffered from the matching problems

illustrated earlier in Section 6.2. The best spatial filter was used for the data below.

Inter-sensor delay was swept between -35µs and 35µs, which for my micro-

phone array would correspond to array speeds higher than 94m/s. All four spatial

filters mentioned above were tested, as were four separate integrating capacitances

available in the system. Due to the relatively slow speed of the pulse-generation

hardware used to test this chip, time resolution of less than 1.3µs was not possible.

The limited the fastest array speed to 2538m/s. For these slow wavefronts, the

smallest values of Cint had too few data points in the usable voltage range to effec-

tively analyze. The largest integrating capacitance, 12pF, yielded the clearest data.
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Figure 6.6: Computer-generated inputs and Cint=12pF. Kernels: bandlo,
bandmedlo. Chip: 1st Generation STFAP.

Plots of this data for each of the four spatial filter kernels can be seen in Figures 6.6

and 6.7. In the STFAP system, integration begins at 3.3V, so the salient Vint value

at any point is measured from that reference voltage. Because voltage outputs of

the filters will be inversely proportional to velocity, these plots use inter-sensor

time-delay so that a linear and proportional relationship can be observed.

From the data plotted, slope and y-intercept parameters are extracted. These

parameters represent 2IrefAspat/Cintand Verr respectively from Equation 5.11. The

theoretical and experimental results for these parameters can be seen in Table 6.1.

As you can see from the values, the experiments match well with theory: the exper-

imental data for the curve slopes differ by 0–5.5% from the calculated parameters.

The most probable sources of error are the matching of Iref currents and Cint capac-

itors. As for Verr values—these stem from non-zero current from the filters when
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Figure 6.7: Computer-generated inputs and Cint=12pF. Kernels: bandmedhi,
bandhi. Chip: 1st Generation STFAP.

Theoretical Experimental

Filter name 2IrefAspat/Cint Verr 2IrefAspat/Cint Verr

bandlo 110V/ms 0V 104V/ms 0.76V

bandmedlo 77.6V/ms 0V 75.8V/ms 0.91V

bandmedhi 60.0V/ms 0V 60.2V/ms 0.787V

bandhi 83.1V/ms 0V 84.1V/ms 0.81V

Table 6.1: Theoretical and experimental values for spatiotemporal filter parame-
ters. Data from 12pF integrating capacitor of STFAPv1.
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all sensor inputs are logic-high. This occurred because I didn’t calibrate the spa-

tial filter kernels from current data, and used kernels whose sums were close (less

than 2) but not always equal to zero. The Verr values show up on the graphs as an

offset from 3.3V. With calibration, Verr can reduce to nearly zero, and thus give a

larger signal range. In addition, although Cint values were designed to increase in

powers of two, the experimental data shows that this is not exactly the case, the

real multiples being 1.6 or 1.8 depending on the size of capacitors being compared.

It is more difficult to extract accurate slopes from this experimental data, because

there are fewer points in the high-slope curves before the signal saturates. But it

is likely that extra parasitic capacitances not carefully considered are affecting the

ratios, as mentioned in Section 6.3.

6.6.1.2 STFAPv2

From the improved current matching of the second generation of STFAP chip,

all filters behaved well. One of the spatial filters from this design is illustrated in

the data below.

For the testing of the second generation chip, an improved experimental setup

allowed 200ns time resolution on the synthesized signals. Instead of being gener-

ated by a Digital I/O card in a PC, a fast PIC microcontroller from Microchip was

used to create the pulse signals. Data for the different spatial filters already showed

a good match for theoretical expectations even with the less precise generation 1
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chips. Also, with the increased time-precision available in the experimental setup

to test generation 2, data is now able to measured for all capacitor values. Because

of these two factors, for this version of the chip data from one spatial filter is dis-

played, “bandhi”, integrated with 4 separate capacitors values. The data measured

also matches acceptably with theory.

The most striking difference between chip generations can be seen in Figure 6.8.

Dense data points for all capacitance values are displayed. With the increased time

resolution of the input waveforms, the exceptional linear response of the filters

can be seen. In addition, the new circuitry of STFAPv2 produces meaningful data

points covering the middle of the graph, corresponding to the region around 0µs

delay. This region was missing from STFAPv1, because it was completely out of

range. The datapoints in Figure 6.8 which are obviously saturated are all located

below 0.8V, making for easy discrimination of useful data from errant points.

6.6.2 Microphone Signals from Ultrasonic Beacon

With baseline performance now firmly in hand, the practical results of the full

system in action is now presented. With a stationary ultrasonic pinger and a rotat-

ing stage for the microphone array, I tested the reception of real sonar pulses into

the system.
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(for filter bandhi) Theoretical Experimental

Integrating Capacitor 2IrefAspat/Cint Verr 2IrefAspat/Cint Verr

1.5pF 1500V/ms 0V 1240V/ms 0.93V

3pF 750V/ms 0V 680V/ms 0.74V

6pF 375V/ms 0V 346V/ms 0.61V

12pF 188V/ms 0V 174V/ms 0.61V

Table 6.2: Theoretical and experimental values for spatiotemporal filter parame-
ters. Data from bandhi and all integrating capacitors of STFAPv2.
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Cint. Chip: 2nd Generation STFAP.
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6.6.2.1 STFAPv1

The four spatial filters’ responses can bee seen in Figures 6.9(a.), 6.10(a.), 6.11(a.),

and 6.12(a.).

It is important to remember that these plots are plotted against bearing angle,

not inter-sensor delay as are Figures 6.6 and 6.7. As such, they will include the

effect of the sine function and not be purely linear. However, they will be approxi-

mately linear near 0◦ because the sine function is approximately linear there. Also,

I have limited the voltage excursion of the STFAPv1 system so that voltage buffers

in the chip stay in their functional range. This leaves a gap around 0◦ bearing for

some curves. The steepest curves on both sides of 0◦ result from the 1.5pF integrat-

ing capacitance, and the shallowest curves from 12pF integrating capacitance.

Visible on some curves is a slight waviness for negative angles. This is proba-

bly due to a wall on the negative-angle side of the experimental setup. Care was

taken to reduce reflections by placing the testing apparatus near the middle of the

room, and by acoustically damping the wall surface. I did not have a true anechoic

chamber in these experiments however, and the data shows the effect of sonic con-

tribution from this wall. Interference was also unavoidable because these experi-

ments used a continuous tone instead of short bursts. Had bursts been used, the

first returns would have been accurate, coming from the shortest path from bea-

con to array, and the longer path from beacon to wall to array could have been

ignored. The continuous-tone experiments that were actually implemented meant
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Figure 6.9: STFAPv1 system responses with the bandlo spatial filter to real ultra-
sonic beacon inputs. (a) Raw voltage outputs. (b) System precision measure at
each angle.
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Figure 6.10: STFAPv1 system responses with the bandmedlo spatial filter to real
ultrasonic beacon inputs. (a) Raw voltage outputs. (b) System precision measure
at each angle.
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Figure 6.11: STFAPv1 system responses with the bandmedhi spatial filter to real
ultrasonic beacon inputs. (a) Raw voltage outputs. (b) System precision measure
at each angle.
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Figure 6.12: STFAPv1 system responses with the bandhi spatial filter to real ul-
trasonic beacon inputs. (a) Raw voltage outputs. (b) System precision measure at
each angle.
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that at every instant of time the signals received by the array were a superposition

of direct transmissions and faint wall-bounced signals. Despite this experimental

drawback, the data remains remarkably clear.

These raw data plots contain points for 20 observations at the each angle, al-

lowing us to compute statistics. Visual inspection of the data shows that there is

not much vertical spread of points at the same angle, a qualitative figure of merit.

A useful quantitative figure of merit is precision at a given angle, arrived at by

dividing the standard deviation at an angle by the slope of the mean at that angle.

By this measure, the smallest angular difference that can be reliably distinguished

from this data can be shown. Plots of precision for all values of Cint for a given

spatial filter kernel are shown in Figures 6.9(b.), 6.10(b.), 6.11(b.), and 6.12(b.). In

each graph, a maximum of 2 outlier points have values that place them off the top

of each graph in the usable range from -60◦ to 60◦. The exception to this is the

obviously noisy center part of 2 curves in the plot for the bandhi spatial filter, and

1 curve in the plot of the bandmedhi spatial filter. The precision in these center

regions is too poor to be included on the precision graphs. This data could be ex-

cluded by changing the voltage thresholds for acceptable data on-chip, but was

included here to show more complete data for the chip. The majority of points,

however, are within a precision of 1◦, and most of the few remaining points still

show better than 2◦ precision.
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6.6.2.2 STFAPv2

Improvements in the experimental setup occurred for the measuring of STFAPv2.

The most important improvement is the use of pulses instead of continuous tones

from the beacon. This should eliminate superposition of extraneous echos from

polluting the beacon signal. There is still some waviness in the real response of the

array to bearing angle, but it is possible this is the result from nonidealities of the

physical transducer array. In addition the response is markedly more symmetric,

probably due to reduced effects of echo interference from nearby objects.

From Figure 6.13(a.), some improvements can be seen in the response of the

2nd Generation chip to real ultrasonic beacon pulses. The major improvement is

the complete continuity of response through the 0◦ angle. In the previous version

of the chip, internal circuitry was out of range for these points, making it impos-

sible to read bearings from this critical region at the center of the angular range

of the array. Now however, full readings are available. This increased informa-

tion is reflected also in the graph of precision in Figure 6.13(b.). Instead of the gap

seen in previous precision graphs for STFAPv1 where precision and data were un-

defined, here there is a dense amount of datapoints from all 4 filters squarely in

the region of 1◦ precision. Besides this region near 0◦ , overall precision is similar

in this generation of the chip to the previous generation: at many angles preci-

sion is computed to be better than 1◦, and better than 2◦ precise for almost all of

the rest within the range (−60◦, 60◦). While the circuits of STFAPv2 became more
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precise, it appears that external factors such as microphone amplification and fil-

tering, microphone quality, and the propagation factors of ultrasound itself, may

still contribute enough errors to rule out a major increase in overall bearing preci-

sion. Major over improvement remains, however, by the expansion of the usable

angular range of the array to angles near 0◦.

6.6.3 STFAP Accuracy

The most important figure of merit for the STFAP system is accuracy. Accuracy

measures how the processor determines the absolute angle value, and not merely

how well it distinguishes two angles from each other. To test angular accuracy, I

first made plots for each of the 16 filter outputs (4 spatial filters, with 4 temporal

integrators each.) I then fit these data plots to the theoretical formula, Equation

5.17. Two parameters for each filter were extracted from these fits: Verr, and a pa-

rameter m encompassing vsCint/(2x0IrefAspat). For complete system operation, the

information from all 16 filter outputs are used together. Since the arcsine function

of Equation 5.17 is non-linear, instead of averaging the separate computed θincident

expressions together, the separate solutions to the linear expression inside the arc-

sine function were averaged. The arcsine function is then applied to this average

to arrive at the final θincident estimate, as shown in the Equation 6.1.

θincident = arcsin

(∑16
i=1 (Vinti − Verri) mi

16

)
(6.1)
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Figure 6.13: STFAPv2 System responses with the bandhi spatial filter to real ul-
trasonic beacon inputs. (a) Raw voltage outputs. (b) System precision measure at
each angle.
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6.6.3.1 STFAPv1

Figure 6.14 shows the angle estimates that result from the measured data. Ap-

parent is a loss of accuracy around 0◦, which mirrors the lack of reliable data near

0◦ in the raw data and precision graphs from each of the filter outputs in Figures

6.9, 6.10, 6.11, and 6.12. Since the graph is monotonic, these problematic points

can be easily identified in the raw data from the voltage range they occupy. They

are separate from and are in no danger of being confused with the more reliable

data from other angles. It may be possible to fit the data from angles near the cen-

ter of the range better by fitting the curve with a more generalized function. This

may also help overall accuracy for the entire angular range. In the error plot in

Figure 6.15, the errors are not distributed randomly, but have definite trends. Im-

proving the method of fitting would eliminate these more deterministic deviations

from the true angle. Despite these imperfections, overall accuracy, measured by

the standard deviation of the error from ideal, was still 1.4◦ for the entire range of

angles between -60◦ and 60◦. This figure improved to 1.0◦ error if angles between

-3◦ and 3◦ are omitted from error calculations.

6.6.3.2 STFAPv2

Again, in Figure 6.16, the predominant improvement of the 2nd Generation

STFAP is the successful processing of angles near normal to the array. The same

simple linear fit procedure was used to produce coefficients to translate each sonar
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Figure 6.14: Graph of estimated angle vs. real bearing angle. Dashed lines show
±2◦ from the ideal.
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Figure 6.15: Error plot of the difference between estimated angle and true angle.
Dashed lines show ±2◦ from the ideal.
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bearing voltage output to a corresponding angle. Instead of the unfortunate dis-

continuity in the center of Figure 6.14 for Version 1 of the chip, Figure 6.16 shows

that Version 2 produces a continuous line of estimates with little spurious data on

the whole interval (−70, 70◦).

Figure 6.17 shows the errors. Again, due to successful circuits the center of

the graph is filled in with actual points of very respectable accuracy. As before,

overall the graph of error shows some structure and is not completely random.

The points are a little more distributed for the Version 2 chip results seen here, but

there is a trend which possibly could be eliminated with a higher-order voltage-to-

frequency mathematical model. Accuracy is still very healthy, and overall for the

range of (−60, 60◦) has significantly improved to a standard deviation error of 1.2◦,

this time including the correctly processed region around 0◦.

6.6.4 Sonar Signals Reflected from Real Objects

To finally test the system in a real use of reflected sonar, an ultrasonic pinger

and the receiver array were placed together, viewing a scene with two tall cylin-

drical targets placed on a bench top. No Temporal Gain Compensation (increasing

gain over time to boost distant pulses) was used. The setup was almost exactly the

same as for the beacon tests, except that both sonar transmitter and array receiver

were both directed at the scene. STFAP version 1 chip was used for the processing.

Figure 6.18 shows position of sonar transmitter/array receiver (at [0,0]) and
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Figure 6.16: Graph of estimated angle vs. real bearing angle. Dashed lines show
±2◦ from the ideal.
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Figure 6.17: Error plot of the difference between estimated angle and true angle.
Dashed lines show ±2◦ from the ideal.
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Figure 6.18: STFAPv1 computing the 2-D position of two objects in a full sonar
trial.

position of the two cylindrical targets (circles). In addition, dots corresponding

to 2-D position estimates from array range and angle data are also plotted. The

locations of the dots are computed using angles computed by the linear fit method

described in Section 6.6.3. Range was computed from computed time delay from

ultrasonic transmission to reception and an assumed value for the speed of sound

in air of 340m/s. Sound speed is known to be variable due to changes in pressure

and temperature, but to a first order this figure should be correct.

Results of this trial are encouraging. The most noticeable systematic error is

the “shadow” cast by the object in the upper-left area of Figure 6.18. This is due

to the long pulse used in our experiments. Because our amplification was sim-

ple, and Temporal Gain Compensation (TGC) was not used, it was necessary to
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increase the length of the pulse to ensure adequate reception. A longer pulse al-

lows both the sonar transmitter and our array microphones to “ring up” or react

to the abrupt beginning of the carrier pulse. The side-effect of a longer pulse, how-

ever, is that multiple bearing readings can be taken along the length of the pulse.

The STFAP will attempt to read the bearing from a sonar pulse as soon as it has

finished reading the bearing of another. If the same pulse is present at the array,

it will readout the same bearing again, at a later time. This translates to multiple

readings, with the same bearing but different apparent distances. This behavior

explains the additional clusters behind the upper-left object.

Other errors are present in this test that are random errors of measurement,

showing no systematic structure. It is expected that these random errors can be

lessened with more careful amplification and signal conditioning of the array mi-

crophone inputs, including TGC. In addition, better amplification circuitry would

allow shorter ultrasonic pulses to be used, eliminating multiple readings and in-

creasing depth precision for all readings.

6.7 Summary

The processing described enables a sonar array to extract not only range in-

formation, but bearing angle as well. The implementation is smaller in size and

power than comparable solutions. Because it is efficient for continuous-time ana-
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log circuits to preserve phase information of the incoming waveforms, more so-

phisticated processing than ensemble ranging is possible: actual phased array pro-

cessing. Instead of examining pulse onset and offset, phase information at every

time of a received waveform can be examined. This synchronous processing al-

lows multiple returns from multiple angles to be correctly analyzed, even if they

are so close together in time that they appear to be one long pulse.

With very simple low power circuits, 1◦ precision was obtained in many in-

stances from basic experiments receiving an actual ultrasonic pulse. Accuracy was

tested by fitting the data to the theoretical equation for system response. Overall

accuracy of angle estimates was found to have a standard deviation of 1.2◦ for the

entire range from -60◦ to 60◦. Full 2-D sonar operation was also demonstrated. A

careful study of the effects of off-chip factors in the sonar system is necessary to

increase accuracy.

By combining this compact implementation with compact MEMS sensors, the

ultimate goal of a small rich-data sonar sensor package yielding both range and an-

gle information can be obtained. It promises a practical means to sense objects and

the environment in three dimensions for mobile or resource-limited applications.
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Process 0.5µm 3M2P CMOS

Chip size 3.0mm × 1.5mm

Power Consumption 1.02mW

Ultrasonic frequency 40kHz

Number of micro-

phone inputs

9

Baseline 26.5mm

(Widest microphone

separation)

Precision 1.0◦ (-60◦ to 60◦)

(Standard devia-

tion/slope of mean)

Accuracy 1.2◦ (-60◦ to 60◦)

(Standard deviation,

estimated-actual

angles)

Table 6.3: Chip and sensor summary.
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Figure 6.19: STFAPv1 Chip micrograph.
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Chapter 7

Sonar Bearing Angle Estimation

Using Spatiotemporal Frequency

Filters: Applications

7.1 Mobile Robots

For decades, research with autonomous mobile robots has approached the ideal

of a economical robust 3-D sensor. A sensor able to detect in three dimensions is

essential to enable navigation and maneuvering around static and moving objects.

Unfortunately, currently there are no sensors that fit both the robust and econom-

ical demands. Laser-rangefinding is potentially very accurate, but is usually ex-

pensive in terms of money and computation, because of the precision required
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for measurements. Traditional sonar using wide-angle sensors and Time-Of-Flight

(TOF) processing is very economical, but not very robust. Still, many groups con-

centrate on making TOF sonar systems viable because their low cost is extremely

attractive compared to other approaches.

There are some well-known fundamental problems with sensing the world

with regular sonar sensors that are typically wide-angle, and using TOF to de-

termine depth only. The major problem is that with the low frequency used for

sonar in air (typically near 40kHz), almost every surface looks smooth compared

to the wavelength of the sound waves. Hence every surface is specular, and reflects

sound like a mirror instead of presenting a diffuse reflection in all directions. This

means that sonar returns typically only come back from ultrasonic energy directed

normal to surfaces, and sound transmissions directed at a surface on an angle will

merely be bounced off in another direction and not back to the receiver unit. In

other cases, transmissions will return to the receiving unit after multiple ricochets.

If the receiver assumes the return comes from a simple bounce off of one object,

the results will be erroneous. The second fundamental problem is that sonar sen-

sors typically are very wide angle. To build a very focused transmitter or receiver

of low-ultrasonic frequency sound would require a very large physical apparatus.

Instead most sonar transceivers, to keep a moderate size, have a very wide-angle

field-of-view. This allows reflections to come to the receiver from a very large solid

angle. Because it is not possible to determine the precise return angle of sonar re-
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turns to these sensors, the ambiguity of the receiving system is increased. The

return could be coming from straight ahead, or from an object off to the side. Be-

cause TOF sensors only receive one real-valued datapoint per output pulse, the

distance of the imaged object from the sensor, this angular ambiguity translates to

a fundamental ambiguity in the measurement of the 3-D environment.

7.1.1 Prior Work

To remedy this problem, many processing approaches have been developed to

take the ambiguous data from multiple TOF sonar sensors, combine the data using

heuristics, statistics, neural networks, or other methods, and deduce the proper 3-

D information from the collection of uncertain data. This type of processing can be

quite intense and complex, needing hundreds to thousands of MIPS to get close to

real-time operation. To implement a processing subsystem of the appropriate com-

putation complexity to refine TOF sonar data requires significant expense, both in

terms of monetary cost and engineering costs such as power and system complex-

ity. Considering that the prime motivation behind using sonar as a sensor modality

is its relative economy, these approaches tend to be counter-productive. They are

analogous to having an unfocused camera and trying to use advanced image pro-

cessing in order to get a clear image. It can possibly be done, but compared to

starting with a camera that is properly focused it’s a waste of resources.

The typical approach used with conventional TOF sonar sensors uses Polaroid
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sonar transducers with processing on a PC or DSP. Often a ring of sensors is used,

with each sensor viewing a sector of space looking out from the perimeter of the

robot. While receiving, each Polaroid sensor uses 0.5W of power. Thus for a ring of

24 sensors, 12W are being consumed just in the receive circuitry. The extra process-

ing necessary to refine the multiple TOF range readings has been accomplished by

different groups in different ways. For software flexibility, standard Personal Com-

puter (PC) hardware has often been used, drawing 100W or more.

The most basic naive approach to modeling a sonar return to a wide-angle sen-

sor is to assume that the pulse is being received from directly ahead. Called the

Centerline Model, this approach is acknowledged as naive but may be used for

efficient computation to get a rough picture of objects in the proximity. In reality,

given a range data point from a sonar sensor, the return could be from anywhere

in an arc equidistant from the receiver within the angle of view. For the Polaroid

6500 sensor, this angle of view is approximately 120◦. Some have modeled the un-

certainty along this arc in a Gaussian fashion, assuming a higher likelihood that a

pulse comes from straight ahead [72]. In the reference, Elfes combines this prob-

ability distribution with an “occupancy grid”, mapping the entire room and up-

dating probabilities of objects being present at each point of the grid. Note that

this method requires internal mapping functionality to work, along with accurate

self-knowledge of robot movement in addition to sonar.

The motivation for a Gaussian probability distribution probably is due to its
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passing resemblance to the sensitivity curve of the Polaroid sensor. However,

close objects’ return energy can easily be greater than the receive threshold and

be sensed even if they are positioned on a low sensitivity bearing on the edge of

the possibility arc. For these objects, it is arguable whether or not the Gaussian dis-

tribution is valid. Recent work uses a uniform possibility for an object’s position

along the equidistant arc. Choset et al. [73] use what they call the Arc-Transversal

Median (ATM) algorithm with uniform-probability arcs. From each sonar return

they create an arc in their map. Intersections of arcs meeting certain criteria are

assumed to be a real location of an object. The processing for the ATM algorithm

is claimed to be modest: “This approach works entirely in software in real time,

so no additional hardware modifications have to be made or purchased.” How-

ever, this implies operation on a PC, with its associated 100W or more of power

consumption. It is unknown just how much processing power is actually neces-

sary for the algorithm to succeed or what kind of processing hardware would be

necessary in the absence of a PC. In addition to the unknown cost of computation,

there are other practical issues for the algorithm’s successful operation. To make a

sufficiently detailed map of the surroundings, returns of the same object or surface

must be taken from multiple positions. This necessitates movement of the robot

to scan its surroundings for an accurate picture. It also requires knowledge of its

own relative positions as it moves, and the ability to keep track of a map. Multiple

range samples are fundamentally necessary for the processor or “planner” to com-
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pensate for the uncertainty of each TOF sonar return. As the Choset et al. note, “a

sonar sensor only provides a real number. This is all the planner knows.”

To increase performance, specialized processing using embedded DSPs for ded-

icated processing has been demonstrated. In [74] Fazli and Kleeman use an opti-

mized DSP system to extract 3-D data from sonar scans in near real-time (15scans/s).

They use the traditional “ring” of sonar sensors around the periphery of a robot.

It is quite an elaborate system, employing 24 sets of transmitter/receiver trans-

ducer pairs, 6 “slave” DSP boards, and one “master” DSP board to coordinate the

slaves. The transducers are standard Polaroid sonar transmitters and receivers.

Each slave board uses one Analog Devices ADSP-2189M DSP and two Texas In-

struments ADS7862 ADCs. To process the data from all of the slave boards, a

master board with another ADSP-2189M DSP controls everything, and computes

bearings using triangulation. To operate the system, all 24 transmitters emit a

uniquely-coded sonar pulse simultaneously, and the 24 receivers note when they

receive each reflection. To code the pulse, different shaped pulses are transmitted,

using different time/voltage profiles to encode each separate transmitter. It is un-

likely that this method is robust against superposition of two separate pulses, but

information on simultaneous reception is not presented in the article. Once pulses

have been identified, using template-matching, bearing information is computed

using triangulation. All sonar sensors are still used in a strictly TOF manner, and

no other data except for the pulse shape is used. Triangulation timing in these
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DSPs is possible because the size of the sonar ring is fairly large (31cm diame-

ter). Because of the wide baseline, timing precision requirements are not stringent.

And yet, the entire system uses at least 1.25W of power just for computation of

received pulses, given the components listed above. This neglects other necessary

power components such as the analog front end for the receiving sensors. With

this amount of power, a traditional phased array system based on digitization and

DSPs could’ve been implemented without the need for pulse coding. The system

is clearly elaborate and advanced, but arguably not very efficient in its processing.

For smaller applications with smaller baselines, the timing requirements be-

come even more precise. Smaller robots with physical measurements much smaller

than the 31cm Fazli ring would require at least an order of magnitude higher

processing speed to accomplish triangulation the same way. At the same time,

a smaller robot has less room for energy storage. These mutually exclusive real-

ities strongly argue for alternate processing methods if sonar is to be effectively

used on more miniature platforms.

Alternate methodologies attempting to mimic sonar systems in animals have

been constructed to meet demands for efficiency. Shi and Horiuchi [75, 76] have

produced binaural sonar receiving systems based on the processing methods used

in the brain and nervous system of bats to interpret sonar returns. To even come

close to the accuracy and energy-efficiency of a real bat sonar system would be

a huge advance over any current man-made sonar system. Results of the system
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show waveforms from its neural network processing elements which demonstrate

the ability to discriminate between different reception bearing angles. As of yet

the results are not quantitative, however. In the future, when this approach is

used in a complete system it may be compelling. Currently, however, there are

no published characteristics demonstrating system performance metrics, such as

bearing precision, speed, and other figures of merit.

7.1.2 Using the STFAP

Starting from the bottom-up with an sensor system where the sensors are built

to cooperate with each other is clearly the solution. And the STFAP does this. In-

stead of using large sensors to narrow the field of view, array processing is used

with small wide angle sensors. Better than merely looking precisely in one narrow

angle of view, array processing allows both a wide angle of view and discrimina-

tion between the bearing angles of returns within that view. Instead of reading

one distance from envelope detection at each sensor, the full sensor waveforms

are read for STFAP processing. This enables multiple ranges to be measured, and

allows synchronous processing of the waveforms based on zero-crossings of the

carrier frequency.

1◦ accuracy is demonstrated with extremely low power consumption (1mW).

This is orders of magnitude smaller compared to the state of the art in the litera-

ture. With the linear array outlined previously, the current STFAP a compact 2-D
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sensor that is extremely energy efficient. Combining two perpendicular linear ar-

rays would allow full 3-D sensing of the environment, remaining extremely low

power by present-day standards. For mobile robots, the demonstrated compact-

ness, low-power usage, and accuracy of the STFAP allow the full promise of sonar

sensing to be realized.

7.2 Security Sentry

For security applications, just as optical imaging with cameras is of fundamen-

tal importance, adding depth information from a 3-D sensor such as the STFAP

can add vital information to applications designed to detect intruders.

One application of sonar where optical methods are clearly useless involves

a device described by Wild et al. [77] for detecting people behind walls. By de-

tecting AC signals through ultrasound returns, moving people and respiration of

stationary people can be detected from faint and cluttered signals. The device de-

scribed is designed to enable a team of Law Enforcement or Military personnel

to see through a wall before entering a room. It allows vital information on the

presence and location of friendly and/or hostile persons on the other side of the

wall. At the same time, the ultrasonic frequencies used are not detectable to those

being monitored without specialized equipment. The virtues of such a device to

security personnel include: portability, ability to localize locations of people, and
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fast update rate to accurately record motion such as respiration or heartbeats in

order to detect people. STFAP circuitry is low-power, and consequently could re-

main very portable by necessitating a smaller battery for operation. At the same

time, the fast operation and the bearing angle estimation allow fast determination

of angle bearing or received pulses. It is thus very compatible with field use by

Law Enforcement or Military personnel for this application.

Another application related to distributed sensing is a security outpost de-

signed to detect intruders. Surveillance is often needed in isolated regions, such as

border security around mobile military camps, or remote locations on national bor-

ders. Intelligence on movement of people is also needed in or around hazardous

areas, such as disputed territory subject to warfare. There are numerous locations

where it is advantageous to be able to track the movements of potentially hostile

people without constant maintenance of the tracking method. In some extremely

critical situations, no maintenance is possible after installation. In such locations,

the lifetime of the device itself benefits from low-power operation. Wireless trans-

missions would allow monitoring from a distance the movements of people within

the sonar array’s field of view. The low-power operation of the STFAP is perfect

for such a situation. Even less energy is necessary if the array is teamed with a

“wake-up detector” detecting the presence of people. The sonar array could turn

itself on only when 3-D precision is necessary, and efficiently track people within

a given area. When the cost of maintenance or replacement is exposure to possibly
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life-and-death situations, extended lifetime of a surveillance device is vital.

7.3 Biomedical / Retinal surgery

7.3.1 Background and Current Problems

Ultrasonic arrays have been used for medical imaging for decades. At the

present time, however, most arrays used commercially are linear (1-D) arrays.

Beam azimuth (along the line of the array) has been successfully electronically-

steered in these devices, while altitude of the beam has been controlled by hand

or mechanical means. Some of these linear arrays have additional capabilities for

fixed beam-focusing in the altitude direction, but this usually does not include the

ability to flexibly steer the beam. Such modified linear arrays are termed 1.5-D

arrays.

Certain groups are in pursuit of true 2-D array technology. For medical ap-

plications, Smith and others in the Biomedical Engineering Department at Duke

University have developed different 2-D array transducers using piezoelectric ma-

terials [78, 79], which is now in commercial use. Both kinds of sensor arrays are

very promising because they allow full electronic beam steering in both directions.

Despite the promise, full 2-D arrays have not dominated medical ultrasonic

imaging because of practical problems. The basis for most of the problems are in-

terconnect issues. With frequencies of medical ultrasound in the megahertz range,
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array elements need to be close together to adequately spatially sample space, with

sensor pitch on the order of several hundred microns. With such tight spacing

in two dimensions, connecting every element to cabling becomes difficult. The

method of physically connecting each cable to each array element is challenging,

as is keeping each line from each sensor electrically separate. Crosstalk between

lines is a major design issue. In addition, connecting all of these multiple sig-

nal lines from the sensor location out of the body and back to the processing unit

presents a long path, increasing the signal attenuation of each sensor line.

There can be considerable advantages to closely coupling the ultrasonic ar-

ray processing with the sensing elements. Most importantly, the drawbacks dis-

cussed above result from interconnect issues and long cable lengths from the sen-

sor to the processing. By integrating the processing with the sensors, issues relat-

ing to crosstalk and attenuation can be largely eliminated. Using Micro-Electro-

Mechanical Systems (MEMS) sensors, there is the possibility of building ultrasonic

transducers on the same silicon substrate as the processing electronics, or on com-

patible silicon substrates that can be bonded together with sub-mm-scale precision

using “flip-chip” bonding techniques. Much work has been recently accomplished

in this area, notably by Khuri-Yakob and associates [80]. In addition to increasing

signal quality, this type of interconnect allows much more practical and repeatable

interconnection, a practical advance in the construction of the unit.

Besides these primary benefits of closely-coupled sensing and processing, there
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are system benefits as well. When the processing is at the site of the sensing, ap-

plications utilizing sonar in a feedback loop become possible. Since the physical

length of the connections vastly decreases, the speed of the loop can vastly in-

crease. Applications using direct feedback are currently being explored as active

research projects in the Engineering Research Center for Computer Integrated Sur-

gical Systems and Technology (CISST). In fact, the sonar array processor has been

partially funded by the CISST ERC. The main thrust for research on miniature ul-

trasonic arrays has been microsurgery on the retina. As discussed previously in

this thesis, retinal surgery demands near micron-scale precision of positioning and

movement. One major problems for surgeons is hand tremor affecting precision of

operating instruments. Another issue is that interaction with retinal tissue in most

procedures remains below the threshold of touch, and visual feedback must be re-

lied on completely to monitor and control surgical actions. A sonar system at the

tip of the operating tool in the retina would have the ability to provide hard data

about distance of the tool from the retinal tissue, rather than the inferred depth

information received from surgical microscopes, and visible deformation of the

tissue itself. In addition, by tracking landmarks in the retina, a direct measure of

tool-tip motion due to surgeon tremor can be measured. The goal of future research

in the CISST ERC is to use this 3-D information of tool position to compensate for

tremor and protect against damage to the retina from accidental contact. Just as

tracking movements using visual systems may allow for equal and opposite com-
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pensating motions to steady a tool, so can surgeon tremor be eliminated with a

sonar system. In addition to movement within the 2-D plane, with sonar depth

information is also received, adding more information and the ability to steady a

tool in another axis.

7.3.2 Using the STFAP

For processing to occur at the sensor, electronics will necessarily have to be very

close to the body, or in many of the cases described previously, actually inside the

body. Locations such as these present new requirements on the sensor processing

solutions employed.

First of all, physical compactness is an issue. To be size-compatible with a

micro-sonar array, the implementation of the processing electronics cannot be on

the scale of centimeters, as many contemporary microprocessors or DSPs are to-

day. The size of the STFAP chip is currently on the scale of millimeters, and is not

expected to scale significantly larger with future generations. Small size is espe-

cially important for locations within the human body. For the retina this is an even

stricter requirement. The total volume of the eye is quite small, as is the normal

opening created for surgical tools to enter the eye.

Another issue for processing inside the body is power consumption. Virtu-

ally all power consumed by electronic circuits is given off as heat, and to be non-

damaging to biological tissues this heat cannot be too extreme. Even if the size of
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a traditional DSP could be shrunk down to a size small enough to be placed inside

the body, if it still consumes over watts of power it will give that energy off as heat

in a very small volume. This can be dangerous to tissues, and it may adversely

affect operating conditions by heating up the immediate environment of the tool.

The STFAP with its 1mW of power consumption is much more biologically-compatible.

Power consumption also relates to the size of the array. Using traditional phased-

array techniques based on time-sampling the data, the close spacing of most bio-

logical sonar arrays and operational sonar frequencies of megahertz would require

sampling rates nearing 100MHz. Any traditional processor dealing with frequen-

cies this high would need a correspondingly higher power consumption compared

with the relatively low frequencies used in robot navigation. The DSP-based pro-

cessing of the Fazli ring described in Section 7.1.1 performed at 40kHz with 1.5W

of power could easily scale to over 100W if the same processing were used. Obvi-

ously this is not practical. The processing in the STFAP, because it uses continuous-

time processing and doesn’t rely on time-sampled systems, will be able to scale to

higher frequencies without a commensurate increase in power consumption. It

should remain more biologically-compatible even at higher frequencies.

Low-power processing and biologically compatible implementation could en-

able even more visionary applications for sonar devices. For instance, implantable

devices to measure blood flow or monitor an organ can be imagined. Implantable

devices must be even more frugal with power than devices connected to the out-
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side world by wires. They must use only the power from a battery, which may or

may not be recharged using near-field magnetic power transmission through the

skin. The power able to be transmitted through the skin is minor without causing

damage: 10mW/cm2. In addition to this, the bandwidth transmitted back through

the skin to the outside world is also typically modest, less than 1Mbit. Raw data

from multiple sonar transducers would present too much bandwidth, and so must

be processed internally. This combination of necessary local processing and very

low power usage presents very challenging design requirements, but future gen-

erations of the STFAP promise to make such devices possible.
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Chapter 8

Conclusion

8.1 Efficient High-Performance Sensor Processing

The bulk of this thesis has been devoted to the detailing the performance of

two types of sensor processing. The common thread has been sensing modalities

designed from the ground up for efficiency, enabled by parallel access to the raw

sensor data, and by taking advantage of mixed-signal application-specific process-

ing. By translating the raw data directly to applicable forms for the computation

involved instead of a completely generic digital representation, efficiency has been

improved. As with any application-specific processing, the engineering trade-off

has been made in favor of efficiency and performance, at the expense of some flex-

ibility. The power- and size-efficient designs, greatly improve the sensing systems’

appropriateness for certain applications, and enable their use in numerous appli-
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cations not otherwise possible, as has been seen.

8.1.1 Autonomous Robotics

Autonomous robotics is one area which will greatly benefit from an improved

vision system of DPCT vision sensor, and the special ability of the sonar processor

to bring new clarity to the economical yet previously ambiguous sonar sensing

modality. The sensor systems designed produce data that is far more valuable

than a raw signal. Instead of raw analog sensor data, or high-bandwidth digital

streams of raw sensor data, what these sensors provide can already be useful to a

computer as features.

For a mobile robot, energy storage is already bulky and heavy. Clearly, effi-

cient computation, allowing a robot to understand more of its environment using

less power resources, is a valuable ability. Current robots are the size of an office

trashcan, which allows for a certain amount of indoor movement. These “trashcan

form-factor” robots are convenient for robot designers because they are able to ac-

commodate large batteries and standard PC computers. For the next-generation of

untethered smaller robots to become a reality, power efficiency will no longer be

beneficial, but necessary.

Physical volume is also a valuable commodity for mobile robots. The single-

chip implementation of my sensor processing greatly benefits the cramped spaces

of robots. Instead of multiple boards devoted to DSPs, ADC chips, and associated
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wiring, simplicity is provided by computational sensors. Again, what is a luxury

for today’s variety of mobile robots will become a fundamental requirement as

sizes shrink.

Efficiency is useful to extend the useful range of present-day autonomous robots.

To create robots the the size of a toaster or smaller, processing efficiency will need

to be increase even further. My sensor systems provide this needed efficiency

boost.

8.1.2 Biomedical Applications

For computer-assisted surgery, the role of the DPCT imager and sonar array

processor become defined by their role in feedback loops. To compensate for un-

wanted motion and stabilize surgical tools, a measure of the unwanted motion is

first needed. Measuring optically or by sonar tremor from the surgeon’s hand to

the surgical instrument is only part of the process. Completing the feedback loop

successfully by causing actuators to create opposite motion and nullify the un-

wanted movement requires speed in the loop. The throughput of the traditional

combination of sensor, ADC, and computer is not enough in this situation. The

latency, or delay from the real-life event until the system has recognized the event

can be more important than how many times per second this process is carried

out. The normal method of serializing sensor data from parallel sources such as

an imager or sonar array, digitizing the serial stream, and computing in sequential
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steps, allows for much delay. Pipelining this process improves throughput but not

total latency.

My sensor processing systems, because of their intimate access to the raw data,

and parallel modes of computation, are able to notice real-life events and respond

with very little latency. In addition, their throughput meets or exceeds the perfor-

mance of their traditional counterparts.

8.1.3 Distributed Sensing

Distributed sensing nodes are independent sites for measuring the world that

are likely to be in isolated areas. The main assumptions of my definition of a dis-

tributed sensor is that they need to run from a battery, need to communicate wire-

lessly, and have limited or no opportunity for maintenance. A typical example

would be a space-based extra-terrestrial sensor, in orbit or on another planet.

For these applications, efficiency of size and power is of course key. Rising to

equal importance with these abilities, is efficiency or compactness of the data re-

sulting from the sensors. Wireless transmission is costly in the general sense of the

word. Transmitting data wirelessly uses an amount of power directly related to the

data rate. For limited power applications it makes no sense to transmit raw sensor

data from the remote sensor to a central control unit. Thus some local processing

is necessary to cull the useful features from the entire amount of data recorded

from the sensors. When the sensing is combined with feature extraction, as with
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my sensors, this process is intrinsic. From start to finish, the sensor and process-

ing embody the efficiency philosophy, instead of working backward to attempt to

make inefficient general-purpose methods less wasteful.

8.2 Sensor Fusion / Future Work

As have seen, individually these sensors are an effective way to allow different

views of the world in a way that is compatible with resource-limited applications.

The greater promise lies in using them in a coordinated way to extract even richer

3-D information about the world. Using protocols and methodologies already de-

veloped, both sensors are ready to be interfaced to a central processor so their data

can be fused.

The most obvious advantage to using multiple sensors is that deficiencies in

one sensing modality are often not deficiencies in the other. The “blind spots” of

one are likely not a problem for the other.

8.2.1 Complementary Strengths and Weaknesses

8.2.1.1 Depth Information

The DPCT visual sensor, for instance, can possibly perceive depth information.

Various schemes exist for one camera depth. Moving the camera and keeping

track of relative motions of objects within view can be used to receive cues for
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depth. Closer objects appear to move faster across the focal plane than far objects.

A lens aperture set to achieve short depth-of-field can be used with active focusing

to deduce the depth of objects, by noting which parts of the image are currently

in focus at a particular focus setting. Finally, two cameras can sense depth using

stereo vision techniques that have been extensively developed and detailed over

the years.

These methods work to a better or worse degree. Some information about

depth can surely be gleaned by any of these approaches, but the DPCT imager is

definitely not optimized for these tasks. Tracking a full-motion vector field for the

image to deduce relative depth is beyond the scope of the object tracking the DPCT

imager was designed for. Similarly, measuring contrast information to deduce the

depth of objects from lens focus implies another full subsystem in operation. It’s

possible that a computer could process the APS images to provide these extra func-

tionalities. Indeed, one feature of having true image information output from my

imager in addition to computed features is the extensibility of the architecture—

a system designer has free access to high-fidelity image data to process, giving

the ability to create more advanced features when needed. For the DPCT imager,

however, where emphasis is placed on efficiency, this should be viewed only as a

second choice if no other methods are available.

Depth from stereo vision represents a special case. Stereo view of a generic

scene with the DPCT imager would pose a classical computer vision task. Match-
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ing features in one camera to the same features in the other remains a computationally-

intensive task. From two cameras’ APS data, all of the attendant pitfalls and com-

pute cycles for any other types of cameras are no different. The outlook for stereo

vision greatly improves for dual DPCT imagers, however, with the introduction of

active beacons (blinking LEDs) into the scene. Because this imager is optimized for

the tracking of the position of temporal changes, a blinking LEDs position can be

computed with all of the speed, low latency, and efficiency inherent to the DPCT

imager’s optimized design. This kind of stereo vision would allow pinpoint lo-

cations of active beacons to be read out much faster than a full frame-rate (30fps)

commercial camera, at the 180pos./s or more of the position tracking subsystem.

In addition, no extra latencies would be present from LED stimulus to position out-

put from each camera. The resulting calculations of the epipolar stereo geometries

represent a much smaller task than feature matching between images.

However, artificial beacons in a scene remain a special case. There may be many

situations where one is not so fortunate as to be able to place landmarks ahead of

time on features of interest. For these situations, all that is available are the afore-

mentioned alternative visual methods for depth perception, which are clearly dif-

ficult and non-optimal. Sonar, however, is a sensing modality that is optimized

for depth perception. With sonar, it is possible to get a much denser depth map

than with many visual methods. Beacons represent only a few points in the scene,

and other feature-matching methods are able to capture limited numbers of corre-
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spondence points depending on the amount of processing involved. Because the

STFAP sonar has bearing angle directionality in addition to depth, the possibility

exists with extra processing to register a sonar depth profile with a visual image.

The case for a sonar/visual combination improves when using two 1-D arrays or

a 2-D array, so that both altitude and azimuth polar angles are available, allowing

a full 3 axes to match with the 2-D representation from the imager.

8.2.1.2 Active Versus Passive Sensing

Another characteristic distinguishing one sensing method from the other is the

method of illumination. In the case of the visual imager, it is assumed that the

image will be formed from ambient light already present in the scene. For sonar, a

basic requirement is to provide the illumination, in this case a burst of ultrasonic

energy. Each presents advantages and disadvantages when compared to the other.

For stealth or secrecy of sensing, it is obvious that passive sensing is prefer-

able to active sensing. A device should ideally not create any energy that can be

noticed, it should merely record the energy already present in its environment.

For stealthy applications, a visual imager may have the advantage because it is

passive. However, it all depends on whether people who could notice an active

sensor are looking for the emissions it gives off. Ultrasonic sounds, being above

human hearing, are not able to be sensed without special equipment. Thus, for

unsuspecting people not specifically looking for ultrasonic frequencies in their en-
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vironment, sonar could be considered somewhat stealthy. But the fact remains that

creating no output is a sure way to remain unnoticed. If the extra depth precision

of sonar is needed in a secret application, one could imagine predominantly us-

ing the visual system, and adding the ultrasonic system for short periods of time

only when absolutely necessary. This would restrict the amount of time ultrasonic

bursts are being created, helping to preserve secrecy.

Another contrast of passive vs. active sensing techniques is the amount of en-

ergy necessary to provide the illumination. A sonar burst output typically uses

far more energy than reception and processing of the returns. In a Polaroid 6500

stock sonar ranging module, for instance, transmission requires a factor of 20 more

energy than reception [81]. To produce sonar outputs all the time thus presents a

non-negligible waste of energy in the presence of nothing interesting to observe.

Again, a hybrid system using a visual sensor set to wait for something “interest-

ing” to happen before activating the active sonar system could solve this problem.

8.2.1.3 Specularity

The vastly different frequencies/wavelengths of the observables of each sensor

system have a significant effect on their ability to view the world. Surfaces can

reflect waves in basically two ways. They can act more like a perfect mirror, where

the incident angle to normal is the same as the exit angle to normal, like the motion

of a billiard ball off of a bumper. Or they can act in a more diffusing manner, re-
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flecting incoming waves with varying energies in all directions. If a surface is close

to a perfect mirror, it is termed specular, and if it tends to reflect in a diffuse way,

it is termed Lambertian. Generally speaking, the physical size of the irregulari-

ties on a surface compared to the wavelength of the incoming wave will predict

whether the surface appears specular or Lambertian at that wavelength. Rough

surfaces with random irregularities larger than the incoming wavelength will tend

to scatter incoming waves. Smooth surfaces with smaller irregularities will tend to

reflect more rays in a mirror-like way.

Because the wavelength used for sonar in air is approximately 4 orders of mag-

nitude larger than the wavelength for visible light, many more surfaces interact

with sonar in a specular way than visible light. The wavelength of a 40kHz sound

wave in air is about 8.5mm, and the wavelength of red visible light is about 700nm.

A surface with random features on the order of millimeters is very rough indeed.

Most surfaces found in a typical man-made environment are much smoother than

this. Hence almost everything found indoors, and even some natural objects in

outdoor environments will appear specular to sonar in air. In Biomedical appli-

cations where the sonar frequencies used are in between 1MHz and 10MHz, the

sonar wavelengths are between 34µm and 340µm, much shorter and thus fewer

surfaces appear specular.

The result of this is that most surfaces viewed with sonar in air may not reflect

very much sound energy back at the sonar device, but will instead reflect the sound
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on away from the transmitter/receiver unit. At the same time, very few surfaces

are specular to light, because most do not have random surface features smaller

than 700nm. Thus light falling on most surfaces will be reflected in all directions,

allowing a camera in almost any location to see objects under visible light. One of

the few specular surfaces is an ordinary mirror—one sees objects reflected in the

mirror, but it is very difficult to examine the mirror material itself.

Specularity is one of the common challenges with using sonar effectively. The

STFAP solves the problem of discriminating between single reflections and multiple-

bounce reflections. But a more difficult problem is how to accomplish sensing

when very little of the incident sonar pulse comes back to the receiving unit at all.

The solution to this problem is to also use visible light imaging in tandem, as a

sanity check to confirm sonar reports of the absence of objects. For moving ob-

jects which are usually of interest because they represent the dynamic portion of a

scene, the DPCT imager is especially well-suited.

8.2.2 Data Fusion Methods

Using two sensors together in a really coordinated way is not trivial. In fact

it is a whole engineering field called Sensor Fusion. Obviously, the exact method

for combining the data from sonar and visible imaging sensors is not obvious and

qualifies for an entire study in itself. At the same time, some basic strategies for

blending the data from these particular sensors can be described. Because my sen-
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sors have some non-traditional architectures, their unique attributes can be used

to advantage.

The first characteristic of note for both sensor processing schemes is that there

is a definite progression of the representation of data from most raw and parallel,

to less parallel, to a final one or few features output as measurement. Normally,

the goal is to keep distilling the representation into the richest, least entropic rep-

resentation possible to be as friendly as possible to the next subsystem that will

act as a consumer of data. However, this may not always be in the best interest

of a processor unit attempting to carry out sophisticated data fusion. It may want

access to a slightly lower-level version of the dataset coming from each sensor. An

advantage of the sensor processors described in this thesis is that there are a few

possible levels of data representation available. Raw data from all constituent sen-

sor parts is not immediately serialized to forward to a microprocessor. Along the

way to the final answer, my processing carries out data processing of parallel data

in a way that retains some of the parallel structure which may be useful for a later

data fusion processor.

Internally, my sonar processor chip uses 16 separate spatiotemporal filter blocks

that can be combined to one or four output values. Each of these filters represents

added value of processing when compared to the raw microphone data. However,

a view of these filters in parallel allows a segmented view of the spatiotemporal

spectrum that is not available from reading the final bearing angle estimate. The
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responses from these spatiotemporal filters can thus provide valuable insight for

an external processor able to make use of them.

Similarly, my temporal-change pixels in the DPCT imager individually signal

change in incident light, row and column sensors flag each row or column for one

or more pixels changed in their group, and finally the output centroid voltages

pool rows and columns together for simple x and y values. An external processor

desiring access to slightly less-processed data could be allowed to access the raw

column and row flags. With additional modification of the imager array, full access

to every pixel event could be provided.

Both sensors include some asynchronous aspects of their operation and data

production that could be used effectively with an asynchronous communication

system. From an high-level perspective there are some very regular events which

initiate processing in both sonar and imager systems. The APS array is fully syn-

chronous and scanned, and it doesn’t provide computation. The centroid-tracking

subsystem of the imager starts with an reset applied at regular intervals. And for

the sonar system, the original sonar output ping is the beginning of all possible

computation. While the initiating events of these processing systems are regular,

repeated events, there is nothing that requires the consumer of their data to be in

lockstep synchrony with these events. In fact, the wait for data output can vary

widely for both sonar processor and centroid imager, or be absent altogether if

there are no observables to report. The wait to see if data exists can be millisec-
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onds, to see at most dozens of bytes of data. Such sparseness of data could be

capitalized upon by an asynchronous method of transmission.

Parallel sensor processing units producing parallel data suggests that a paral-

lel implementation of a data fusion processor would also be advantageous. The

structure of the data itself has spatial relationships that may be successfully ex-

ploited. For the imager, the spatial relationships are a direct mapping from the

focal plane. Adjacent rows and columns, or more specifically regions of pixels are

related to each other and need to be processed in a way that is sensitive to locality.

Also, segments of the sonar processor’s spatiotemporal space need to be analyzed

by the responses of locations in the 2-D space. Instead of making these spatial

relationships a virtual feature of the computation, real parallel processing blocks

could speed up computation, working simultaneously by taking advantage of the

repeatable spatial nature of the input data. In a digital processor paradigm, par-

allel processors could be used. And because the computation will likely be very

similar, optimization to a Single Instruction Multiple Data (SIMD) methodology

may be possible, where the same exact code runs at the same time on the different

segments of the dataset. If the output of the fusion processor needs to interface to a

more biologically-inspired system, a neural network could be the chosen spatially-

savvy method of computation.
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8.3 Summary

I have detailed the design, construction, and successful testing of two differ-

ent sensing systems. The systems are application-specific, optimized to carry out

useful sensor computations while using the least amount of power and external

circuits. The first is a complete imager with facilities for high-quality image repro-

duction of the scene at normal video frame rates (30fps) and even faster tracking

of the position of moving objects in the scene. The second system is the processing

system for a miniature sonar array using a novel processing scheme.

The imager has demonstrated the normal output of images based on integrat-

ing pixels, allowing for improved immunity to noise over pixels based on instanta-

neous photocurrent. This classic imaging functionality with noise-reducing Dou-

ble Sampling circuitry to subtract reset noise has been demonstrated at a frame

rate fast enough for full-motion video reproduction. In addition to the image re-

production ability of the imager, the focal plane contains additional pixels opti-

mized for sensing temporal change in incident light. After sampling their light

level during frame reset, they are able to signal a change from this reference level

at any time. Temporal changes from pixels are able to be communicated to cir-

cuitry on the edges of the array as they happen, and latches along the rows and

columns keep track of these events as they happen. While these changes are oc-

curring, instantaneous computation of the centroid of the rows and columns show-

ing changes is occurring. Because computation of all of these parts occurs without
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scanning and events are flagged as soon as the incident light changes, computation

of movement position can happen very quickly, and with virtually no latency. In

fact, centroid tracking throughput has been demonstrated at 180pos./s, with less

latency than the time for one position to be reported, or 1/180seconds. The high

update speed and near-zero latency uniquely qualify this imager to be used in an

optical feedback loop. All of this functionality is carried out with extremely low

power-consumption of 2.6mW, allowing the imaging and tracking functions to be

used on platforms which have limited power resources.

The sonar array processor chip successfully adds bearing angle to the tradi-

tional range computation of sonar. It uses a novel method of processing a mi-

crophone array, neither like delay-and-sum nor fully digital DSP-based architec-

tures. The processing is based on spatiotemporal frequency filtering. By applying

spatial kernels instantaneously to microphone signals and time-filtering the spa-

tial filter outputs, a bearing estimate can be quickly calculated from only a few

zero-crossings of an ultrasonic carrier in a sonar pulse. The processing is already

compatible with a small microphone array (26.5mm total baseline), which would

likely be inaccessible to simple triangulation by from traditional time-of-flight sen-

sors. Part of the key to this success is the synchronous processing based on the

ultrasonic carrier wave, not the ill-defined pulse envelope. The resulting bearing

estimate is enabled to be far more accurate than calculation using combinations of

TOF sonar sensors. Additionally, since processing uses continuous-time and not
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sampled-time methods, the baseline of the array can be made smaller without an

increase in a global clock. In time-sampled methods, the clock must be run ever

faster to prepare for the case of most precision, which can scale to hundreds of

megahertz or even gigahertz as the array is scaled smaller. For my continuous-

time approach, there is no need for a constantly running global clock, so power

isn’t wasted on high-power circuits built to be stable for the worst case short clock

period, and power isn’t used when no signals are transitioning. Instead, circuit

precision is the limiting factor on system precision. This trade-off allows ever-

smaller arrays to be approached without a microwave-frequency clock, using only

as much power as is necessary.

In addition, these two sensing systems output data streams are amenable to

combining using data fusion techniques. Their frugal needs, compact size, and

consideration for downstream processing enable them to be an enabling technol-

ogy for biomedical applications, distributed sensing, and truly autonomous small

robots.
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